Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên cần tìm là a và b (a ; b N )
Vì ƯCLN ( a, b ) = 36 nên a = 36 m ; b = 36n
(m , n ) = 1
Theo đề bài ra , ta có : a + b = 36m + 36n = 432 36(m+n) = 432 m + n = 12
Ta tìm được các cặp mn thoả mãn điều kiện :
(m,n) = {( 1,11);(11,1);(5,7);(7,5)}
Vậy (a,b) = {(36, 396);(396;36);(180, 252);(252,180)}
Chúc bạn học tốt!
(a,b) = 36 => a = 36 . m b = 36 . n và (m,n) = 1
36 . m + 36 . n = 432 => m + n = 432 : 36 = 12
Do m; n là 2 nguyên tố cùng nhau nên ta chọn: 12 = 5 + 7 = 7 + 5
- Khi m = 5 và n = 7 => a = 180 và b = 252
- Khi m = 7 và n = 5=> a = 252 và b = 180
Vậy: 2 số tự nhiên đó là (180;252) hoặc (252;180)
Gọi 2 số cần tìm là a và b
Vì ƯCLN của a và b là 36 suy ra a=36k,b=36h(k,hthuộc N* và à 2 số nguyên tố cùng nhau)(1)
a+b=432
36k+36h=432
36(k+h)=432
k+h=12(2)
*từ 1 và 2 suy ra nếu k=1 thì h=11 suy ra a=36, b=376
Nếu k=11 thì h=1 suy ra a= 376 và b= 36
Nếu k=5 thì h=7 suy ra a= 180 và b=252
nếu k=7 thì h=5 suy ra a= 252 và b=180
Gọi 2 số tự nhiên cần tìm là a;b
Vì ƯCLN(a;b)=36
\(\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases}\left(m;n\right)}=1\)
Theo đầu bài ta có:
\(a+b=432\)
\(\Rightarrow36m+36n=432\)
\(\Rightarrow36\left(m+n\right)=432\)
\(\Rightarrow m+n=432:36=12\)
Vì (m;n)=1 mà 12=1+11=5+7=11+1=7+5
Ta lập bảng
Vậy các cặp (a;b) thỏa mãn (36;396);(396;36);(180;252);(252;180)
Gọi 2 số tự nhiên cần tìm là a và b
Vì \(ƯCLN\left(a,b\right)=36\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 36.m, b = 36.n vào a + b = 432, ta có:
36.m + 36.n = 432
=> 36.(m + n) = 432
=> m + n = 432 : 36
=> m + n = 12
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 11 | 5 | 7 |
n | 11 | 1 | 7 | 5 |
a | 36 | 396 | 180 | 252 |
b | 396 | 36 | 252 | 180 |
Vậy các cặp (a,b) cần tìm là:
(36; 396); (396; 36); (180; 252); (252; 180).
Gọi 2 số tự nhiên cần tìm là a và b, ta có:
a = 36 ; a = 180
b= 396 ; b = 252