Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{1}{x^2+x+1}dx=\frac{1}{\left(x-\frac{1}{4}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dx\)
Đặt
\(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant\) => dx=\(\frac{\sqrt{3}}{2}\left(1+tan^2t\right)dt\) =>\(\frac{1}{x^2+x+1}dx=\frac{1}{\frac{3}{4}\left(1+tan^2t\right)+\frac{3}{4}}\left(1+tan^2t\right)dt=\frac{3}{4}dt=\frac{3}{4}t+C\)
Với \(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant=>t=\left(\frac{2\sqrt{3}}{4x-1}\right)\)
Câu b nhá :
\(\frac{1}{x^2+2x+2}dx=\frac{1}{\left(x+1\right)^2+\left(\sqrt{2^2}\right)}dx\)
Đặt
\(x+1=\sqrt{2}tant=>dx=\sqrt{2}\left(1+tan^2t\right)dt\)
=> \(\frac{1}{x^2+2x+3}dx=\frac{1}{2\left(tan^2t+1\right)}.\left(1+tan^2t\right)dt=\frac{1}{2}dt=\frac{1}{2}t+C\)
Với
\(x+1=\sqrt{2}tant=>tant=\frac{x+1}{\sqrt{2}}<=>t=arctan\left(\frac{x+1}{\sqrt{2}}\right)\)
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
a) -2x+14=0
<=>-2x= - 14
<=>x = 7
Vậy phương trình có tập nghiệm x={7}
b)(4x-10) (x+5)=0
<=>4x-10=0 <=>4x=10 <=>x=5/2
<=>x+5=0 <=>x=-5
Vậy phương trình có tập nghiệm x={5/2;- 5}
c)\(\frac{1-x}{x+1}\) + 3=\(\frac{2x+3}{x+1}\)
ĐKXD: x+1 #0<=>x#-1(# là khác)
\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
<=>\(\frac{1-x}{x+1}\)+\(\frac{3.\left(x+1\right)}{x+1}\)=\(\frac{2x+3}{x+1}\)
<=>\(\frac{1-x}{x+1}\)+\(\frac{3x+3}{x+1}\)=\(\frac{2x+3}{x+1}\)
=>1-x+3x+3=2x+3
<=>-x+3x-2x=-1-3+3
<=>0x = -1 (vô nghiệm)
Vâyj phương trình vô nghiệm
d) 1,2-(x-0,8)=-2(0,9+x)
<=> 1,2-x+0,8=-1,8-2x
<=>-x+2x=-1,2-0,8-1,8
<=>x=-4
Vậy phương trình có tập nghiệm x={-4}
37! = 1.2...36.37
Trong tích trên:
+ Có 3 thừa số tròn chục: 10, 20, 30
+ Có 3 thừa số 5; 15; 35. Các số này khi nhân với 1 số chẵn bất kỳ (ví dụ 2, 12, 22) cho kết quả là số có tận cùng là 0
+ Có một thừa số 25. Số 25 x 4 = 100
Vậy 37! chứa tích 10. 20 . 30. (5.2) . (15.12). (35.22) . (25.4)
⇒ 37! có tận cùng 8 chữ số 0
37! = 1.2...36.37
Trong tích trên:
+ Có 3 thừa số tròn chục: 10, 20, 30
+ Có 3 thừa số 5; 15; 35. Các số này khi nhân với 1 số chẵn bất kỳ (ví dụ 2, 12, 22) cho kết quả là số có tận cùng là 0
+ Có một thừa số 25. Số 25 x 4 = 100
Vậy 37! chứa tích 10. 20 . 30. (5.2) . (15.12). (35.22) . (25.4)
⇒ 37! có tận cùng 8 chữ số 0