K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

Ta có:

\(P\left(x\right)=2x^3+5x^4+x^2-x^3-3x^4+2022+3x^2-x^3\)

\(P\left(x\right)=\left(5x^4-3x^4\right)+\left(2x^3-x^3-x^3\right)+\left(x^2+3x^2\right)+2022\)

\(P=2x^4+4x^2+2022\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

2 tháng 5 2022

\(#ko đăng lại nhé!\)

11 tháng 4 2022

+ Thu gọn : 

\(A=x^4+6x^2-2x-2x^3+5x+2\)

    \(=x^4+6x^2-2x^3+3x+2\)

+ Sắp xếp giảm dần :

\(A=x^4-2x^3+6x^2+3x+2\)

10 tháng 5 2020

Bài làm:

Ta có: 

\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)

\(f\left(x\right)=x^3-2x^2+2x-5\)

Và:

\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)

\(g\left(x\right)=-x^3+3x^2-2x+4\)

Chúc bạn học tốt!

A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1

=4x^4+2x^3+2x^2-5x-1

22 tháng 3 2023

`a)`

\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)

`b)`

Đa thức `P(x)` có :

Bậc `2`

Đa thức `Q(x)` có :

Bậc `2`

`c)`

\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)

a: P(x)=4x^2+4x+1-7x=4x^2-3x+1

Q(x)=-5x^2+9x-4

b: P(x) có bậc 2

Q(x) có bậc 2

c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3

a) Ta có: \(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)

\(=6x^5-\left(3x^3+x^3\right)+\left(5x^2+4x^2\right)-2x+2\)

\(=6x^5-4x^3+9x^2-2x+2\)

a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)

   \(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)

   \(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)

   \(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)

 

  \(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)

  \(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)

  \(Q\left(x\right)=5x^2-3x^3-5x^4\)

  \(Q\left(x\right)=-5x^4-3x^2+5x^2\)

b)

\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)

\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)

Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

\(=5x+7x^2+4+4-6x^4\)

\(=\) \((12x-4)^2+4\ge4-6x^4\)

Câu c MIK KHÔNG CHẮC LÀ ĐÚNG 

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9