Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n-3}{n+1}=\frac{2.\left(n+1\right)-5}{n+1}=2-\frac{3}{n+1}\)
2n-3 chia hết cho n+1 <=>\(\frac{2n-3}{n+1}\in Z\Leftrightarrow\frac{3}{n+1}\in Z\)
=>3 chia hết cho n+1
=>n+1 E Ư(3)={-3;-1;1;3}
=>n \(\in\) {-4;-2;0;2}
2n-3/n+1=-5 tìm ước của -5 , ước của -5 ( -1 ; 5 ; 1; 5 ) . Vì là số tự nhiên nên chi có 1 va 5 thoã mãm , n+1=5=>n=4:n+1=1=>n=0
2n - 3 chia hết cho n + 1
=> 2n + 2 - 5 chia hết cho n + 1
=> 2.(n + 1) - 5 chia hết cho n + 1
=> (-5) chia hết cho n + 1
=> n + 1 thuộc Ư(-5) = {1 ; -1 ; 5 ; -5 }
=> n + 1 = 1 => n = 0
n + 1 = -1 => n = -2
n + 1 = 5 => n = 4
n + 1 = -5 => n = -6
Vì n là số tự nhiên
=> n = 0 ; 4
2n - 3 chia hết cho n + 1
=> 2n + 2 -5 chia hết cho n + 1
=> 2 x ( n + 1 ) -5 chia hết cho n + 1
=> ( -5 ) chia hết cho n + 1
=> n + 1 thuộc Ư ( -5 ) = { 1 ; -1 ; 5 ;-5 }
* n + 1 = 1
=> n = 0
* n + 1 = -1
=> n = -2
* n + 1 = 5
=> n = 4
* n + 1 = -5
=> n = -6
2n - 3 chia hết c ho n + 1
2n + 2 - 2 - 3 chia hết cho n + 1
2(n + 1) - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {1 ; -1; 5; -5}
Ta có bảng sau :
2n - 3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vì n thuộc N
=> n = {2 ; 1 ; 4}
\(8n+3:2n-1=\frac{8n+3}{2n-1}=\frac{8n-4+7}{2n-1}=\frac{8n-4}{2n-1}+\frac{7}{2n-1}=\frac{4\left(2n-1\right)}{2n-1}+\frac{7}{2n-1}=4+\frac{7}{2n-1}\)
Để\(\frac{7}{2n-1}\) nguyên thì \(2n-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\Rightarrow\)có 4 trường hợp
TH1: 2n-1=-7\(\Rightarrow\) n=-3
TH2: 2n-1=-1\(\Rightarrow\) n=0
TH3: 2n-1=1\(\Rightarrow\) n=1
TH4: 2n-1=7\(\Rightarrow\) n=4
Vậy \(n\in\left\{-3;0;1;4\right\}\)để \(8n+3\) chia hết cho \(2n-1\)
Nhớ nha! (^_^)