Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{4}=\frac{18}{x+1}$
$\Rightarrow x(x+1)=18.4$
$x(x+1)=72$
$x(x+1)-72=0$
$x^2+x-72=0$
$(x^2-8x)+(9x-72)=0$
$x(x-8)+9(x-8)=0$
$(x-8)(x+9)=0$
$\Rightarrow x-8=0$ hoặc $x+9=0$
$\Rightarrow x=8$ hoặc $x=-9$
Tập hợp giá trị nguyên của $x$ thỏa mãn điều kiện đề bài là:
$\left\{8; -9\right\}$
\(3x^2+9x=0\)
\(3x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy x = { - 3; 0 }
x^2 - 3^2 = 4^2
=> x^2 - 9 = 16
=> x^2 = 16 + 9
=> x^2 = 25
=> x^2 = 5^2
=> x = 5
lx - 3l2 + lx - 3l = 0
mà lx - 3l2 \(\ge\)0 và lx - 3l \(\ge\) 0
=> lx - 3l2 = lx - 3l = 0
lx - 3l2 => x2 - 32 = 0 => x2 - 9 = 0 => x2 = 0 + 9 = 9 => x = căn bậc 2 của 9
lx - 3l = 0 => x - 3 = 0 => x = 0 + 3 = 3
Giá trị tuyệt đối của 1 số không thể là số nguyên âm .
Nen \(\left|x\right|=0;\left|x-2\right|=0\)vì 2 thừa số phải là số nguyên dương . chỉ có 0 + 0 = 0
\(!\left|x\right|=0\Leftrightarrow x=0\)
\(!\left|x-2\right|=0\Leftrightarrow x=0+2=2\)
=> bài toán không có kết quả x . Vì 1 bên có kết quả là 0 , bên kia lại có kết quả là 2.
Ta có :
\(\left|x\right|\ge0\)
\(\left|x-2\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\)
Mà đề cho \(\left|x\right|+\left|x+2\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|x-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x-2=0\Rightarrow x=2\end{cases}}}\)
Vì trong một biểu thức không thể có một ẩn mà nhận 2 giá trị
Nên không có giá trị x thõa mãn đề bài