Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC ~ tam giác DEF theo tỉ số đồng dạng là k = 2/5
thì tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng là 1/k = 5/2
ΔABC~ΔKHG
=>\(\dfrac{AB}{KH}=\dfrac{2}{3}\)
=>\(KH=AB\cdot\dfrac{3}{2}\)
ΔKHG~ΔMNP
=>\(\dfrac{KH}{MN}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}\cdot\dfrac{3}{2}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}=\dfrac{1}{3}:\dfrac{3}{2}=\dfrac{2}{9}\)
=>ΔABC đồng dạng với ΔMNP theo tỉ số \(\dfrac{2}{9}\)
1: AB=20cm
=>AB=2dm
=>\(\dfrac{AB}{CD}=\dfrac{2}{4}=\dfrac{1}{2}\)
2: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔHNM đồng dạng với ΔMNP
Xét ΔHPM vuông tại H và ΔMPN vuông tại M có
\(\widehat{P}\) chung
Do đó: ΔHPM đồng dạng với ΔMPN
Xét ΔHMN vuông tại H và ΔHPM vuông tại H có
\(\widehat{HMN}=\widehat{P}\left(=90^0-\widehat{N}\right)\)
Do đó: ΔHMN~ΔHPM
Câu 3:
ΔDEF~ΔMNP
=>\(\widehat{E}=\widehat{N}\) và \(\dfrac{DE}{MN}=k\)
Xét ΔDHE vuông tại H và ΔMIN vuông tại I có
\(\widehat{E}=\widehat{N}\)
Do đó: ΔDHE đồng dạng với ΔMIN
=>\(\dfrac{DH}{MI}=\dfrac{DE}{MN}=k\)
Vì ΔABC ⁓ ΔMNP theo tỉ số k =2 ⇒ M N A B = 1 2
Nên ΔMNP ⁓ ΔABC theo tỉ số M N A B = 1 2
Đáp án: C