K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:

\(CD\cdot CM=CH^2\left(1\right)\)

Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:

\(CE\cdot CN=CH^2\left(2\right)\)

Từ (1) và (2) suy ra \(CD\cdot CM=CE\cdot CN\)

27 tháng 8 2019

a, Áp dụng hệ thức về cạnh góc vuông và hình chiếu lên cạnh huyền trong các tam giác vuông HCD và HCE ta có CD.CM = CE.CN (= C H 2 )

b, Sử dụng a) để suy ra các tỉ lệ về cạnh bằng nhau. Từ đó chứng minh được ∆ CMN:CDE(c-g-c)

15 tháng 7 2023

cảm ơn, rất hữu ich

 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:

\(CD\cdot CM=CH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:

\(CE\cdot CN=CH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CD\cdot CM=CE\cdot CN\)

b: Ta có: \(CD\cdot CM=CE\cdot CN\)

nên \(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

Xét ΔCMN và ΔCED có 

\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

\(\widehat{MCN}\) chung

Do đó: ΔCMN\(\sim\)ΔCED

a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD

nên \(CM\cdot CD=CH^2\left(1\right)\)

Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE

nên \(CN\cdot CE=CH^2\left(2\right)\)

Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)

1 tháng 10 2021

CP đâu ra

 

31 tháng 10 2017

 a) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 
=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 

=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

5 tháng 1 2022

ANH CS THỂ THAM KHẢO 

a , b tự lm nha ( dễ mà )

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

Và MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ: