K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:

\(CD\cdot CM=CH^2\left(1\right)\)

Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:

\(CE\cdot CN=CH^2\left(2\right)\)

Từ (1) và (2) suy ra \(CD\cdot CM=CE\cdot CN\)

27 tháng 8 2019

a, Áp dụng hệ thức về cạnh góc vuông và hình chiếu lên cạnh huyền trong các tam giác vuông HCD và HCE ta có CD.CM = CE.CN (= C H 2 )

b, Sử dụng a) để suy ra các tỉ lệ về cạnh bằng nhau. Từ đó chứng minh được ∆ CMN:CDE(c-g-c)

15 tháng 7 2023

cảm ơn, rất hữu ich

 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:

\(CD\cdot CM=CH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:

\(CE\cdot CN=CH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CD\cdot CM=CE\cdot CN\)

b: Ta có: \(CD\cdot CM=CE\cdot CN\)

nên \(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

Xét ΔCMN và ΔCED có 

\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

\(\widehat{MCN}\) chung

Do đó: ΔCMN\(\sim\)ΔCED

Bài 1 :

Có : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=5k;AC=6k\) ( k \(\in N\) )

Xét \(\Delta ABC\) vuông tại A có :

\(BC^2=AB^2+AC^2\)

\(12^2=\left(5k\right)^2+\left(6k\right)^2\)

\(12^2=61k^2\)

\(\frac{144}{61}=k^2\Rightarrow k=\frac{12\sqrt{61}}{61}\) cm

Có AB = 5k = \(\frac{60\sqrt{61}}{61}\) cm

AC = 6k = \(\frac{72\sqrt{61}}{61}cm\)

Xét \(\Delta ABC\) vuông tại A có đường cao AH

=> \(AB^2=BH.BC\Rightarrow BH=\frac{300}{61}\) cm

Có : CH = BC - BH = \(\frac{432}{61}cm\)

6 tháng 9 2019

Bài 2:

Xét \(\Delta\)CHD vuông ta có:

\(CH^2=CM.CD\)

Xét \(\Delta CHE\) vuông ta có:

\(CH^2=CN.CE\)

=> \(CH^2=CM.CD=CN.CE\)

a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD

nên \(CM\cdot CD=CH^2\left(1\right)\)

Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE

nên \(CN\cdot CE=CH^2\left(2\right)\)

Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)

1 tháng 10 2021

CP đâu ra

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ:

31 tháng 7 2021

a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)

c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)

 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAFE vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)