K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)

\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)

1 tháng 4 2017

có bị ngược dấu ko nhỉ ?

9 tháng 3 2019

Bài này dễ thôi em :) A B C x y z 1 1 1 2 2 2

Ta có: \(\sin C_1=\frac{x}{R};\sin C_2=\frac{y}{R};\sin B_1=\frac{x}{R};\sin B_2=\frac{z}{R};\sin A_1=\frac{y}{R};\sin A_2=\frac{z}{R}\)

khi đó \(\frac{2\left(x+y+z\right)}{R}=sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\)

Xét \(f\left(a\right)=sina\rightarrow f''\left(a\right)=-sina< 0\) là hãm lõm nên ta áp dụng BDT Jensen:

\(sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\le6sin\left(\frac{A+B+C}{6}\right)=6sin\left(\frac{180}{6}\right)=3\)

\(\Rightarrow\frac{2\left(x+y+z\right)}{R}\le3\Leftrightarrow x+y+z\le\frac{3R}{2}\)

Lại theo BĐT C-S: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\cdot\left(x+y+z\right)}=\sqrt{3\cdot\frac{3R}{2}}=3\sqrt{\frac{R}{2}}\)

9 tháng 3 2019

đạo hàm cấp 2 đó em <(")

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

( 99 - 1 ) : 2 + 1 = 50 ( số )

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

17 tháng 10 2019

A=120

2 tháng 10 2017

Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}.AB.r+\frac{1}{2}.BC.r=\frac{1}{2}\)

\(AB+BC+CA.r=pr\)

P/s: Ko chắc

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)                                và            x+y+z=2 hãy...
Đọc tiếp

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)

và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)

b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)

2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?

\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)

b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

                                và            x+y+z=2

 hãy tính \(P=\sqrt{\left(1+X\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)

3, ba đường tròn (O,R),(O1,R1).(O2,R2) vời R<R1<R2 tiếp xúc ngoài với nhau từng đôi một đồng thời cùng tiếp xúc với một đường thẳng,gọi S, S1, S2 lần lượt là diện tích các hình tròn tâm O,O1,O2.

Chứng minh \(\frac{1}{\sqrt[4]{S}}=\frac{1}{\sqrt[4]{S1}}+\frac{1}{\sqrt[4]{S2}}\)

4,Cho đường tròn tâm O bán kính R và đường tròn tâm O' bán kính R' cắt nhau tại A Và B. TRên tia đổi của tia AB,lấy điểm C,Kẻ tiếp tuyến CD.CE với đường tròn tâm O(D,E là các tiếp điểm và E nằm trong đường tròn tâm O') đường thẳng AD.AE cắt đường tròn tâm O' lần lượt tại M,N (M và N khác A) tia DE cắt MN tại I ,chứng minh rằng

a, tam giác MIB đồng dạng với tam giác AEB

b. O'I vuông góc với MN

5, tam giác ABC Có góc A không nhọn, BC =a,CA=b,AB=c

Tìm Min của P=(1-a/b)(1-b/c)(1-c/a)

2
15 tháng 5 2016

Có vẻ phê ...

15 tháng 5 2016

Bạn đăng từng câu 1 thui chứ, nhìn cái đề đã thấy sợ r ns j lak lm

4 tháng 12 2021

1.

Gọi cạnh tam giác ABC là a

\(S_{ABC}=S_{AMB}+S_{BMC}+S_{AMC}\\ \Leftrightarrow\dfrac{1}{2}ah=\dfrac{1}{2}ax+\dfrac{1}{2}ay+\dfrac{1}{2}az\\ \Leftrightarrow x+y+z=h\)

Lại có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=h^2\left(bunhia\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{1}{3}h^2\)

Dấu \("="\Leftrightarrow x=y=z\Leftrightarrow M\) là giao 3 đường p/g của \(\Delta ABC\)