K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE(gt)

và AB=AC(ΔABC cân tại A)

nên BD=CE

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: CD=BE(hai cạnh tương ứng)

b) Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

AE=AD(gt)

Do đó: ΔABE=ΔACD(c-g-c)

Suy ra: \(\widehat{ABE}=\widehat{ACD}\)

14 tháng 7 2023

AE=ED phải không bạn?

14 tháng 7 2023

A B C D E G

Đề bài phải sửa thành AE=ED

a/

Xét tg ABC

DE//AB (gt)

BD=CD (gt)

=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)

Mà DE=AE (gt) (2)

Từ (1) và (2) => DE=AE=CE (3)

Ta có

BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC

\(\Rightarrow DE=\dfrac{AB}{2}\) (4)

Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)

\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)

=> tg ABC cân tại A

b/

Xét tg ABC có

AD là trung tuyến (gt)

AE=CE (cmt) => BE là trung tuyến

=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)

 

 

20 tháng 1 2018

:  a/ Xét 2 tam giác BDE và CED có 
BD=EC 
DE chung 
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED 
=> dccm (c.g.c) 
b/ Có góc DKB bằng góc EKC do đối đỉnh 
KD=KE 
góc BDK=góc CEK 
=> KBD=KCE (g.c.g) 
c/ Tam giác ABK và ACK bằng nhau (tự cm, cái này dễ) 
=> góc BAK = góc CAK =>dccm 
d/ kéo dài AM cắt BC tại H 
Tam giác BMH = tam giác CMH 
=> góc BMH bằng góc CMH 
=> dpcm

Bố thí cho cái - Give you :v

21 tháng 4 2020

BANG 4987

21 tháng 4 2020

dinh gia khanh

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E