Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√4
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
a) Xét tam giác AFB và tam giác DMA có:
\(\widehat{ABF}=\widehat{DAM}\) (Cùng phụ với góc \(\widehat{BAM}\) )
\(\widehat{FAB}=\widehat{MDA}=90^o\)
AB = AD
\(\Rightarrow\Delta AFB=\Delta DMA\) ( Cạnh góc vuông, góc nhọn kề)
\(\Rightarrow AF=DM\)
\(\Rightarrow DM=AE\)
Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.
Lại có \(\widehat{EAD}=90^o\) nên AEMD là hình chữ nhật.
b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)
Ta có: \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)
Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)
Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)
\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)
Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)
\(\Rightarrow k=1\)
Vậy thì AE = EB hay E, F là trung điểm AB, AC.
Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)
Vậy AC = 2EF.
c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)
\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)
\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)
\(\Rightarrow AM.BN=AD.AD\)
\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)
\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)
\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)
\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)
\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
phần b bạn giải dài quá
ta có tam giác BAF đồng dạng với BHA (g.g)
=> af/ah=bf/ab=ab/hc
<=> af/ah=ab/hb
<=> ae/ah=bc/hb
mà hbc=bah
suy ra hbc đồng dạng với hae (cgc)
mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng
suy ra (ae/bc)^2=1/4
=>ae/ab=1/2