Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b +c = 9
( a+b+c )^2 = 9^2
a^2 + b^2 +c^2 + 2ab+ 2bc +2ac = 81
53 + 2(ab+bc+ac) = 81
2(ab+bc+ac) = 81 - 53
2(ab +bc +ac) = 28
ab + bc +ac = 14
a2 + b2 + c2 = 53
Ta có
(a+b+c)2=a2+b2+c2 + 2ab+2ac+2bc = 92 (1)
thay a2 + b2 + c2 = 53 vào (1)
=> 53 +2ab+2ac+2bc = 92
=>2ab+2ac+2bc = 92 - 53
=> 2ab+2ac+2bc = 28
=> 2.(ab+bc+ca)=28
=> ab+bc+ca = 28:2 = 14
(a+b+c)^2=81
<=>a^2+b^2+c^2+2ab+2bc+2ac=81
<=>53+2(ab+bc+ac)=81
<=>2(ab+bc+ac)=28
<=>ab+bc+ac=14
Ta có: \(a+b+c=9\)
\(\Leftrightarrow\left(a+b+c\right)^2=9^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)
\(\Leftrightarrow2ab+2bc+2ca=81-\left(a+b+c\right)\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=81-53=28\)(Vì \(a^2+b^2+c^2=53\))
\(\Leftrightarrow ab+bc+ca=14\)
Vậy \(ab+bc+ca=14\)
Đề: Biết \(8x^3+12x^2y+6xy^2+y^3=27\) . Tính \(A=x\left(2x+y\right)+xy+\frac{1}{2}y^2\)
-------------------------
Ta có:
\(8x^3+12x^2y+6xy^2+y^3=27\)
\(\Leftrightarrow\) \(\left(2x+y\right)^3=27\)
\(\Leftrightarrow\) \(2x+y=3\)
Do đó:
\(A=3x+xy+\frac{1}{2}y^2\)
\(=3x+\frac{1}{2}y\left(2x+y\right)\)
\(=3x+\frac{3}{2}y\)
\(=\frac{3}{2}\left(2x+y\right)\)
\(A=\frac{9}{2}\)
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2.(ab + bc + ac) = 92 - 53
2.(ab + bc + ac) = 81 - 53
2.(ab + bc + ac) = 28
ab + bc + ac = 28 : 2
ab + bc + ac = 14
(a - b)2 >= 0 (bình phương của một số luôn >=0)
=> a2 + b2 >= 2ab (dấu = xảy ra khi a = b) (1)
Tương tự:
b2 + c2 >= 2bc (2)
c2 + a2 >= 2ac (3)
Cộng vế với vế của (1),(2),(3) ta có:
2 (a2 + b2 + c2) >= 2 (ab + bc + ca)
(a2 + b2 + c2) >= 2 (ab + bc + ca)
Dấu bằng chỉ khi a = b = c
a^2 + b^2 + c^2 = ab+ ac + bc => 2( a^2 + b^2 + c^2) = 2( ab+ ac + bc)
=> (a-b)^2 + (b-c)^2 + (c-a)^2 =0
vì (a-b)^2>= 0 (b-c)^2 >= 0 ( c-a)^2>=0
=> a-b =0 ; b-c=0; c-a=0 ( dùng dấu ngoặc nhọn nhá)
=> a=b b=c c=a hay a=b=c
Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
=>[a+b+c]^2 -2[ab+bc+ac] = ab+bc+ac
=> a^2+b^2 +c^2 = ab+bc+ac => a^2+b^2+c^2 -ab-bc-ca = 0
=> 2a^2+2b^2+2c^2 -2ab-2bc-2ca=0
=> a^2-2ab+b^2 + b^2-2bc+c^2 + c^2- 2ca + a^2 = 0
=> [a-b]^2 + [b-c]^2 +[c-a]^2 = 0
=> a-b = b-c = c-a = 0
=> a=b=c