Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=8x^3+12x^2y+6xy^2+y^3=27\)
\(\Leftrightarrow\left(2x+y\right)^3=27\)
=>2x+y=3
\(B=x\left(2x+y\right)+xy+\dfrac{1}{2}y^2\)
\(=3x+\dfrac{1}{2}y\left(2x+y\right)=3x+\dfrac{1}{2}y\cdot3=3x+\dfrac{3}{2}y\)
\(=\dfrac{3}{2}\left(2x+y\right)=\dfrac{3}{2}\cdot3=\dfrac{9}{2}\)
a: =(xy-2x)-(y^2-2y)
=x(y-2)-y(y-2)
=(x-y)(y-2)
b: =(x^2-2xy+y^2)-(x-y)
=(x-y)^2-(x-y)
=(x-y)(x-y-1)
c: =(x^2-1)-(2xy-2y)
=(x-1)(x+1)-2y(x-1)
=(x-1)(x+1-2y)
d: =(x+3)(x+3-2x+5)
=(x+3)(8-x)
\(a,xy-2x-y^2+2y\)
\(=x\left(y-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(y-2\right)\)
\(b,x^2-2xy+y^2-x+y\)
\(=\left(x-y\right)^2-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-1\right)\)
\(c,x^2-1-2xy+2y\)
\(=\left(x-1\right)\left(x+1\right)-2y\left(x-1\right)\)
\(=\left(x-1\right)\left(x+1-2y\right)\)
\(d,\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x+3-2x+5\right)\)
\(=\left(x+3\right)\left(-x+8\right)\)
#Urushi
Bài 1:
a: \(M=3\left[\left(x+y\right)^2-2xy\right]-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)
\(=3\left(4-2xy\right)-\left[8-6xy\right]+1\)
\(=12-6xy-8+6xy+1=5\)
b: \(N=\left(2x-y\right)^3+3\left(2x-y\right)^2+3\left(2x-y\right)+11\)
\(=9^3+3\cdot9^2+3\cdot9+11\)
=729+243+27+11
=729+270+11=1010
Bài 1:
b: =x^2-10x+x-10
=(x-10)(x+1)
c: \(=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\)
d: \(=3x^2+5x-3x-5=\left(3x+5\right)\left(x-1\right)\)
e: \(=\left(2x+y\right)^3\)
Bài 1:
a) \(\left(2x+\frac{1}{3}\right)^2-\left(1-2x\right)^2=\frac{16}{9}\)
\(\Leftrightarrow4x^2+\frac{4x}{3}+\frac{1}{9}-1+4x-4x^2-\frac{16}{9}=0\)
\(\Leftrightarrow\frac{16x-8}{3}=0\)
\(\Leftrightarrow16x-8=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2+21\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+x-6x^2-21=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow x=1\)
Bài 2:
\(\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6xy-y^3\)
\(=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6xy-y^3\)
\(=6x^2y-6xy+9\)
Sai đề ko bạn ?
Đề: Biết \(8x^3+12x^2y+6xy^2+y^3=27\) . Tính \(A=x\left(2x+y\right)+xy+\frac{1}{2}y^2\)
-------------------------
Ta có:
\(8x^3+12x^2y+6xy^2+y^3=27\)
\(\Leftrightarrow\) \(\left(2x+y\right)^3=27\)
\(\Leftrightarrow\) \(2x+y=3\)
Do đó:
\(A=3x+xy+\frac{1}{2}y^2\)
\(=3x+\frac{1}{2}y\left(2x+y\right)\)
\(=3x+\frac{3}{2}y\)
\(=\frac{3}{2}\left(2x+y\right)\)
\(A=\frac{9}{2}\)
hic nhìu mà khó nữa *_*