Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(a+b\right)^2-\left(c+d\right)^2\)
b: \(=\left(a-d\right)^2-\left(b-c\right)^2\)
c: \(=\left(x+3z\right)^2-4y^2\)
d: \(=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)
e: \(=\left(a-5\right)^2\cdot\left(a+5\right)^2=\left(a^2-25\right)^2\)
\(\left(x+y\right)^3=x^3+3x^2y+3xy^2-y^3\)
\(\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)
\(\left(2y-3\right)^3=8y^3-36y^2+54y-27\)
a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
a)\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)=y^4-81-y^4+4=-77\)
b) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=b\left(2a-2c+b\right)-2ab+2bc=b^2\)
Sửa lại đề bạn nhé!
c) \(P\left(3-1\right)=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2P=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2P=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
...
\(2P=3^{64}-1\Rightarrow P=\frac{3^{64}-1}{2}\)
a,
(y-3)(y+3)-(y2+2)(y2-2)
=y2-9-y4-4
=y2-y4-9-4
=y2-y4-13
b,
đề ghi thiếu chỗ mũ rồi
c,
(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
cái này mk k bt nữa
a,(x+2y)3 =x3+3.x2.2y+3.x.(2y)2+(2y)3
= x3+6x2y+12xy2+8y3
b, phần b tương tự dấu thay đổi một tí
c, (5x+1)(5x+1)= (5x+1)2
=25x2+10x+1
(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
=>dpcm
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(52-1)(52+1)(54+1)(58+1)(516+1)
=(54-1)(54+1)(58+1)(516+1)
=(58-1)(58+1)(516+1)
=(516-1)(516+1)
=532-1
==>P=(532-1)/2
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)c\left(a+b+c\right)+c^3\)
\(=a^3+3ab\left(a+b\right)+b^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(\text{đ}pcm\right)\)
Đặt \(a+b-c=x;b+c-a=y;a+c-b=z\)
Lúc đó \(x+y+z=b+c-a+a+b-c+a+c-b=a+b+c\)
\(\Rightarrow bt=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3z\left(x+y\right)\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^2+3z\left(x+y\right)\left(x+y+z\right)\)
\(+z^3-x^3-y^3-z^3\)
\(=x^3+3xy\left(x+y\right)+y^2+3z\left(x+y\right)\left(x+y+z\right)\)
\(+z^3-x^3-y^3-z^3\)
\(=3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)\)
\(=3\left(x+y\right)\left(xy+xz+zy+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)