Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5^3\cdot25^n=5^{3n}\)
\(\Leftrightarrow5^{3n}=5^3\cdot5^{2n}\)
=>3n=2n+3
hay n=3
b: \(a^{\left(2n+6\right)\left(3n-9\right)}=1\)
=>(2n+6)(3n-9)=0
=>n=-3 hoặc n=3
c: \(\dfrac{1}{3}\cdot3^n=7\cdot3^2\cdot3^4-2\cdot3^n\)
\(\Leftrightarrow3^n\cdot\dfrac{1}{3}+3^n\cdot2=7\cdot3^6\)
\(\Leftrightarrow3^n=3^7\)
hay n=7
Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
=> \(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{16}{34}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
=> \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
=> \(1-\frac{1}{x+2}=\frac{16}{17}\)
=> \(\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
=> \(x+2=17\)
=> \(x=15\)
=>1/1-1/3+1/3-1/5+1/5-1/7+....+1/x-1/(x+2)=16/34
=>1/1-1/(x+2)=16/34
=>1/(x+2)=1-16/34
=>1/(x+2)=9/17
=>(x+2).9=17
=>(x+2)=17/9
=>x=17/9-2
=>x=-1/9(không là số tự nhiên)
vậy không có số tự nhiên x thoả mãn điều kiện bài toán
\(a)A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\dfrac{2^{12}.3^5-\left(2^2\right)^63.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(A=\dfrac{2^{12}.3^5-2^{12}.3^5}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^6.7^3+5^9.7^3.2^3}\)
\(A=\dfrac{0}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^6.7^3\left(1+5^3+2^3\right)}\)
\(A=0-\dfrac{5^4.\left(-6\right)}{1+125+8}\)
\(A=0-\dfrac{625.\left(-6\right)}{134}\)
\(A=\dfrac{-3750}{134}\)\(=\dfrac{-1875}{67}\)
\(b)3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=(3^n.9+3^n)-\left(2^n.4+2^n\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
\(Suy\) \(ra:\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
b. Ta có: \(3^{n +2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10⋮10\)
Ta có : \(3^{-1}.3^n+5.3^{n+1}=162\)
\(\Leftrightarrow3^{-1}.3^n+15.3^n=162\)
\(\Leftrightarrow3^n\left(3^{-1}+15\right)=162\)
\(\Leftrightarrow3^n\frac{46}{3}=162\)
\(\Leftrightarrow3^n=\frac{162.3}{46}=\frac{243}{23}\) (đề sai òi e ơi)
Ta có
\(\frac{4^{n+3}+17.2^{2n}}{9^{n+1}+7.3^{2n}}=\frac{2^{2n+6}+17.2^{2n}}{3^{2n+2}+7.3^{2n}}=\frac{2^{2n}.\left(2^6+17\right)}{3^{2n}.\left(3^2+7\right)}=\left(\frac{2}{3}\right)^{2n}.\frac{81}{16}=1\)
\(\Rightarrow\left(\frac{2}{3}\right)^{2n}.\frac{3^4}{2^4}=1\Rightarrow\left(\frac{2}{3}\right)^{2n}=\left(\frac{2}{3}\right)^4\Rightarrow2n=4\Rightarrow n=2\)
\(3^{n-1}+9.3^n=28.3^5\)
\(\Rightarrow3^{n-1}+9.3^{n-1}.3=28.3^5\)
\(\Rightarrow3^{n-1}.\left(1+9.3\right)=28.3^5\)
\(\Rightarrow3^{n-1}.28=28.3^5\)
\(\Rightarrow3^{n-1}=3^5\)
\(\Rightarrow n-1=5\)
\(\Rightarrow n=6\)
Vậy n = 6
mấy bài này để để mấy bạn khác làm,HUY TƯ là cộng tác viên nên làm những bài khó hơn