K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

ta có : \(\frac{2016x+2}{2016x-1}-1=\frac{3}{2016x-1}\)

\(\frac{2016x}{2016x-3}-1=\frac{3}{2016x-3}\)

ta thấy : nếu x>0 thì \(\frac{3}{2016x-1}>\frac{3}{2016x-1}\)

=> \(\frac{2016x+2}{2016x-1}>\frac{2016x}{2016x-3}\)

nếu x<0 thì \(\frac{3}{2016x-1}< \frac{3}{2016x-3}\)

=>\(\frac{2016x+2}{2016x-1}< \frac{2016x}{2016x-3}\)

31 tháng 7 2016

Nếu x>0 thì \(\frac{3}{2016x-3}\)>\(\frac{3}{2016x-1}\)

=>\(\frac{2016x+2}{2016x-1}\)<\(\frac{2016x}{2016x-3}\)

thao mik là như vậy chứ

tui ko bít bạn học lớp mí

7 tháng 4 2018

lớp999999

17 tháng 1 2016

1)can(2)*(can(2)+1-can(3))

2)-1/(canbậc3của2-1)

3)120

4)1

5)3

6)60

7)chưa làm

8)72

9)47

4 tháng 7 2015

cam on cau nhieu de minh xem lai cau 1

23 tháng 9 2016

x(1+2+3...2016)=2017.2018

 x.2017.2016:2=2017.2018

 1008x=2018

 x=1009/504

7 tháng 9 2016

=> (x + x + x + .... + x) . (1 + 2 + 3 + ..... + 2016) = 2017.2018

=> 2016x . 1008 . 2017 = 2017 . 2018

=> 2016x . 1008 = 2018

=> /////////////

13 tháng 8 2016

PT <=> 2016x(x-√(4x-3)) + (x-√(4x-3))(x+√(4x-3))=0 

<=> (x-√(4x-3))(2016+x+√(4x-3))=0

Còn lại bạn tự giải

14 tháng 8 2016

giải chi tiết giùm đi

25 tháng 7 2017

a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)

a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)

bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v

 Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)

\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)

\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)

\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)

\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

22 tháng 9 2017

giải hộ nha

12 tháng 2 2018

\(2016x^{2017}+2017y^{2016}=2015\left(1\right)\)

Có 2016x2017 là số chẵn, 2015 là số lẻ 

=> 2017y2016 là số lẻ => y2016 là số lẻ

Đặt y1008 = 2k+1 \(\left(k\in Z\right)\)

Có y2016 = (2k+1)2 = 4k2+4k+1

=> 2017y2016 = 2017 (4k2+4k+1) = 2017.4.(k2+k)+2017

Lại có: \(2017.4.\left(k^2+k\right)\equiv0\left(mod4\right)\)

           \(2017\equiv1\left(mod4\right)\)

suy ra: \(2017y^{2016}\equiv1\left(mod4\right)\)

mà   \(2016x^{2017}\equiv0\left(mod4\right)\)

\(\Rightarrow2016x^{2017}+2017y^{2016}\equiv1\left(mod4\right)\left(2\right)\)

Lại có: \(2015\equiv3\left(mod4\right)\left(3\right)\)

Từ (1), (2) và (3) => PT vô nghiệm