Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\frac{2}{3}\ge x\ge\frac{5}{2}\)
\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\left(\sqrt{2+4x}-2\right)-\left(2x+3\right)\left(\sqrt{6-4x}-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2+4x-4}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{6-4x-4}{\sqrt{6-4x}+2}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2\left(2x-1\right)}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2\left(2x-1\right)}{\sqrt{6-4x}+2}=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)=0\)
Theo ĐK ta chứng minh đc \(\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)>0\)
Do đó \(2x-1=0\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)
\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)
ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)
<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)
=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1
thay vào phương trình ban đầu đều thỏa mãn => pt có 2 nghiệm x=1; x=-1
ĐK: \(-\dfrac{1}{4}\le x\le3\)
\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
\(3x-2\sqrt{4x-3}=3\) (ĐK: \(x\ge1\))
\(\Leftrightarrow2\sqrt{4x-3}=3x-3\)
\(\Leftrightarrow\left(2\sqrt{4-3}\right)^2=\left(3x-3\right)^2\)
\(\Leftrightarrow4\cdot\left(4x-3\right)=9x^2-18+9\)
\(\Leftrightarrow16x-12-9x^2+18x-9=0\)
\(\Leftrightarrow34x-9x^2-21=0\)
\(\Leftrightarrow27x+7x-9x^2-21=0\)
\(\Leftrightarrow\left(27x-9x^2\right)-\left(21-7x\right)=0\)
\(\Leftrightarrow9x\left(3-x\right)-7\left(3-x\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(9x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\9x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(n\right)\\x=\frac{7}{9}\left(l\right)\end{matrix}\right.\)
Vậy: x=3
Phương pháp giải như sau :
Trước hết phải có ĐKXĐ là \(x>1\)
Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\) (1)
Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có
\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên
(1) \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)
Kết luận:... (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
Gợi ý
ĐKXĐ: ....
Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có
\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)
Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x , rồi đối chiếu ĐKXĐ và trả lời
KL : ...
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
PT <=> 2016x(x-√(4x-3)) + (x-√(4x-3))(x+√(4x-3))=0
<=> (x-√(4x-3))(2016+x+√(4x-3))=0
Còn lại bạn tự giải
giải chi tiết giùm đi