Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
a: góc D+góc ABC=360-90-90=180 độ
b: góc CBE+góc ABC=180 độ
góc D+góc ABC=180 độ
=>góc D=góc CBE
Xét tam giác AHB và tam giác CKA có:
\(\widehat{AHB}=\widehat{CKA}=90^o\)
\(\widehat{A_1}=\widehat{B_1}\)( cùng phụ \(\widehat{A_2}\))
=> \(\Delta AHB~\Delta CKA\)
=> \(\frac{AH}{CK}=\frac{HB}{KA}\Rightarrow AH.KA=HB.CK\) (1)
Xét \(\Delta CKD\) và \(\Delta DHB\)
có: \(\widehat{DHB}=\widehat{CKD}=90^o\)
\(\widehat{D_1}=\widehat{C_1}\)( cùng phụ \(\widehat{D_2}\))
=> \(\Delta CKD~\Delta DHB\)
=> \(\frac{CK}{DH}=\frac{KD}{HB}\Rightarrow KD.DH=CK.HB\)(2)
Từ (1) , (2)
=> \(KD.DH=AH.KA\)
=> \(\frac{KD}{AH}=\frac{KA}{DH}=\frac{KD+KA}{AH+HD}=\frac{AD}{AD}=1\)
=> KD=AH
Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)
\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)
\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)
Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)
\(2019^2+2018^2=2019^2+2018^2+0\)
Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)
\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)
\(\Leftrightarrow C< D\)