Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\) (do 102007+1<102008+1)
=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)
=>10A>10B
=>A>B
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)
=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)
=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)
=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)
Cách 2:
Ta có: \(10A=\dfrac{10^{2008}+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\)
\(10B=\dfrac{10^{2009}+10}{10^{2009}+1}=1+\dfrac{9}{10^{2009}+1}\)
Vì \(\dfrac{9}{10^{2008}+1}>\dfrac{9}{10^{2009}+1}\Rightarrow1+\dfrac{9}{10^{2008}+1}>1+\dfrac{9}{10^{2009}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
10.A=\(\frac{10.\left(10^{2006}+10\right)}{10^{2007}+1}\)
=\(1+\frac{9}{10^{2007}+1}\)
B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
\(10.B=\frac{10.\left(10^{2007}+10\right)}{10^{2008}+1}\)
= \(1+\frac{9}{10^{2008}+1}\)
Vì\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\) nên 10A > 10B \(\Rightarrow A>B\)
k cko mk nka
nhân cả tử và mẫu của a cho 10 ta được A=10^2008/10^2009 (nhân cả tử và mẫu cho 1 số thì giá trị của A vẫn k đổi em nhé)
so sánh A=10^2008/10^2009 với B=10^2008/10^2009 vì cùng tử và 2 mẫu bằng nhau nên A=B