Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, \(\left(\dfrac{8}{15}+\dfrac{14}{23}\right)-\left(\dfrac{5}{15}-\dfrac{9}{23}\right)\)
\(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\left(\dfrac{8}{15}-\dfrac{5}{15}\right)+\left(\dfrac{14}{23}+\dfrac{9}{23}\right)\)
\(=\dfrac{3}{15}+1\)
\(=1\dfrac{1}{5}\)
B, \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}\)
\(=\dfrac{5}{6}\)
a) \(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\dfrac{8}{15}-\dfrac{5}{15}+\dfrac{14}{23}+\dfrac{9}{23}\)
\(=\dfrac{1}{5}+1\)
\(=\dfrac{6}{5}\)
b)
a, \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)
\(=1+1=2\)
Chúc bạn học tốt!!!
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}.\)
\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)
\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)
\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)
\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)
\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)
\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)
mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)
\(\Rightarrow A< B\)
A = \(\dfrac{1}{3}\)+ \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)
3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)
3A - A = 1 - \(\dfrac{1}{3^{2023}}\)
2A = 1 - \(\dfrac{1}{3^{2023}}\) < 1
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{12}\)
B = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)
B = \(\dfrac{8}{12}\)
B = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1
2A < 2B ⇒ A < B
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2022}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2021}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{2022}}$
$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{2022}}$
Xét hiệu:
$A-B=\frac{1}{2}-\frac{1}{2.3^{2022}}-(1-\frac{1}{3^{2021}})$
$=\frac{1}{3^{2021}}-\frac{1}{2.3^{2022}}-\frac{1}{2}$
$=\frac{5}{2.3^{2022}}-\frac{1}{2}$
$< \frac{1}{2}-\frac{1}{2}=0$
$\Rightarrow A< B$
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}>\dfrac{49}{100}=A\)