Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27^{13}=\left(3^3\right)^{13}=3^{39};243^8=\left(3^5\right)^8=3^{40};3^{39}< 3^{40}\Rightarrow27^{13}< 243^8\\ 125^{80}=\left(5^3\right)^{80}=5^{240};25^{118}=\left(5^2\right)^{118}=5^{236};5^{240}>5^{236}\Rightarrow125^{80}>25^{118}\)
a) Ta có \(\overline{2021ab}⋮31\Leftrightarrow202100+\overline{ab}⋮31\Leftrightarrow11+\overline{ab}⋮31\Leftrightarrow\overline{ab}\in\left\{20;51;82\right\}\).
Vậy..
a/
\(\overline{2021ab}=202100+\overline{ab}=6519.31+11+\overline{ab}⋮31\)
\(6519.31⋮31\Rightarrow11+\overline{ab}⋮31\)
=> \(\overline{ab}=20\) hoặc \(\overline{ab}=51\) hoặc \(\overline{ab}=82\)
b/ 536 chia b dư 11; 2713 chia b dư 13 nên b>13
\(536-11=525⋮b\Rightarrow5.525=2625⋮b\)
\(2713-13=2700⋮b\)
\(\Rightarrow2700-2625=75⋮b\)
=> b=5 hoặc b=25 hoặc b=75. Do b>13 => b=25 hoặc b=75
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
9^20 > 27^13 ( t...i...c...k n...h...a )
920>2713
Có cần cách làm ko?