Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(B=\left[\left(-\frac{3}{7}\right)^5\right]^4\)
\(B=\left(-\frac{3}{7}\right)^{20}\)
\(A=\frac{3}{7}\cdot\left(\frac{3}{7}\right)^{19}\)
\(A=\left(\frac{3}{7}\right)^{20}\)
\(\Rightarrow A>B\)
[ hoq chắc ]
a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)
\(=3^{11}\cdot2^{30}\)
\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)
Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)
Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)
b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy dãy trên nhỏ hơn 1
a/
\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)
\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)
b/
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)
\(=1-\dfrac{1}{10^2}< 1\)
1) -3/7 và 2/-5
Ta có -3/7= -15/35
2/-5= -14/35
mà -15< -14 nên -15/35< -14/35
Vậy -3/7< 2/-5
So sánh:
\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)
\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)
\(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)
So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)
Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)
\(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)
Vì 49.3 + 6 < 49.6 + 5 nên Q > P.
cần gấp
^$@*&^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%$%%$%$%$%$%%%%%%%%%%%%%%%%%%454%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$%%%%%%%%%%%%$%$%%$$%$%$%$%$%$%$%$%$