K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(2 ^2010 +1)/(2 ^2017 +1) và (2 ^2012 +1)/(2 ^2009 +1)

Trả lời :

(2 ^2010 +1)/(2 ^2017 +1) < (2 ^2012 +1)/(2 ^2009 +1)

HC T bài này khó đó

NM
18 tháng 10 2021

ta có:

\(\left(2^{2010}+1\right)>\left(2^{2009}+1\right)>1\) và \(\left(2^{2017}+1\right)>\left(2^{2012}+1\right)>1\)

thế nên 

\(\left(2^{2010}+1\right)\left(2^{2017}+1\right)>\left(2^{2012}+1\right)\left(2^{2009}+1\right)\)

27 tháng 1 2021

Ta có :

\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)

\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)

\(\Leftrightarrow A>B\)

16 tháng 12 2015

Có nhiều cách giải bài này. Hiện tôi có cách giải như sau tôi nghĩ là nó là ngắn nhất

Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B

1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8

1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8

Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1

5 tháng 2 2016

Đặt A = \(\frac{2009^{2009}+1}{2009^{2010}+1}\)

      B = \(\frac{2009^{2010}-2}{2009^{2011}-2}\)

Do 20092010- 2 < 20092011- 2 => \(B<1\)

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

2 tháng 4 2016

nhân A 2009 lần và B 2009 lần mà so sánh

2 tháng 4 2016

ta có:

B=(2009^2010-2)/(2009^2011-2)<1

=>(2009^2010-2)/(2009^2011-2)<(2009^2010-2)+2011/(2009^2011-2)+2011=(2009^2010+2009)/(2009^2011+2009)

=[2009*(2009^2009+1)]/[2009*(2009^2010+1)]=(2009^2009+1)/(2009^2010+1)=A

Vậy A=B

Đúng thì !

22 tháng 3 2016

2^2015+1/2^2012+1 < 2^2017+1/2^2014+1 

22 tháng 3 2016

22015+1/22012+1<22017+1/22014+1...........dung 100%

Ai h mk mk se h lai

17 tháng 1 2018

Ta sẽ CM : \(\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(a;b;m>0;a>b\right)\)

Thật vậy ; ta có :

\(a>b\\ \Rightarrow am>bm\\ \Rightarrow ab+am>ab+bm\\ \Rightarrow a\left(b+m\right)>b\left(a+m\right)\\ \Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(đpcm\right)\)

Áp dụng BĐT trên ; có :

\(\dfrac{2^{2012}+1}{2^{2009}+1}>\dfrac{2^{2012}+1+3}{2^{2009}+1+3}\\ =\dfrac{2^{2012}+2^2}{2^{2009}+2^2}\\ =\dfrac{2^2\left(2^{2010}+1\right)}{2^2\left(2^{2007}+1\right)}\\ =\dfrac{2^{2010}+1}{2^{2007}+1}\)