Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\left(có30số\right)\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}\cdot30=\frac{1}{2}< \frac{4}{5}\)\(\Rightarrow S< \frac{4}{5}\)
\(2^{-1}+\left(5^2\right)^3\cdot5^{-6}+4^{-3}\cdot32-2\left(-3\right)^2\cdot\dfrac{1}{9}\)
\(=\dfrac{1}{2}+5^6.5^{-6}+4^{-3}.4^2.2--6^2.\dfrac{1}{9}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{4}.2+\dfrac{3^2.2^2}{3^2}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{2}+2^2\)
\(=\dfrac{1}{2}.2+1+4\)
\(=1+5=6\)
a)3/4+1/1/4*2/2/3-(-1/2)^2:6/5
=3/4+5/4*8/3-1/4:6/5
=3/4+10/3-5/24=18/24+80/24-5/24=93/24=31/8
b)(x-1)^5=32=2^5
=>x-1=2
x=2+1
x=3
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.>>>>>>>>........................................................................................................................................................................................................................................................................................................................................................................................................................................................
??????????????????????????????????????????????????????/