Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:\(10^{10}\) và \(48.50^5\)
Ta có:
\(10^{10}=10^{2.5}=\left(10^2\right)^5=100^5=\left(2.50\right)^5=2^5.50^5=32.50^5\)
Vì \(32.50^5< 48.50^5\)
\(\Rightarrow10^{10}< 48.50^5\)
a) 1024 9 = ( 2 10 ) 9 = 2 90 < 2 100
b) 6 . 5 29 > 5 . 5 29 = 5 30
c) 10 30 = ( 10 3 ) 10 = 1000 10 ; 2 100 = ( 2 10 ) 10 = 1024 10 n ê n 10 30 < 2 100 .
a) Cách 1: 2 100 = 2 10 10 = 1024 10 > 1024 9
Cách 2: 1024 9 = 2 10 9 = 2 90 < 2 100
b) 6 . 5 29 > 5 . 5 29 = 5 30
c) 2 98 = 2 2 49 = 4 49 < 9 49
d) 10 30 = 10 3 10 = 1000 10 ; 2 100 = 2 10 10 = 1024 10 nên 10 30 < 2 100
`@` `\text {Ans}`
`\downarrow`
`2^100` và `3^50`
Ta có:
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{50}=\left(3^2\right)^{25}=9^{25}\)
Vì `16 > 9 =>`\(16^{25}>9^{25}\Rightarrow2^{100}>3^{50}\)
Vậy, `2^100 > 3^50` `.`
Sao không so sánh \(4^{50}\) với \(3^{50}\) cho nhanh nhỉ
Ta có:
\(2^{200}.2^{100}=\left(2^2\right)^{100}.2^{100}=4^{100}.2^{100}=\left(4.2\right)^{100}=8^{100}\)
\(3^{100}.3^{100}=\left(3.3\right)^{100}=9^{100}\)
Vì \(8< 9\) nên \(8^{100}< 9^{100}\)
Vậy \(2^{200}.2^{100}< 3^{100}.3^{100}\)
\(#WendyDang\)
\(A=8^{200}=\left(2^3\right)^{200}=2^{600}=2^{100}\cdot2^{500}\\ B=2^{100}\cdot9^{150}=2^{100}\cdot\left(3^2\right)^{150}=2^{100}\cdot3^{300}\\ 2^{500}=32^{100};3^{300}=27^{100}\\ 32^{100}>27^{100}\Rightarrow2^{500}>3^{300}\\ \Rightarrow A>B\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)
Ta có: 2100=231.269
= 231 . 263 . 26
= 231 . ( 29 )7 . ( 22)3
= 231 . 5127 . 43
Lại có : 1031 = 231 . 531
= 231 . 528 . 53
= 231 . ( 54) 7 . 53
= 231 . 6257 . 53
=>231 . 6257 . 53 > 231 . 3127 . 53 > 231 . 3127 . 43
<=> 2100<1031
2100 < 1031