K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

2021/2022=(2022-1)/2022=1-1/2022

 2022/2023=(2023-1)/2023=1-1/2023

Do: 2022<2023

=>1/2022>1/2023

=>1-1/2022<1-1/2023

Vậy 2021/2022 < 2022/2023

8 tháng 9 2021

\(\frac{2021}{2022}< \frac{2022}{2023}\)

@Cỏ

#Forever

22 tháng 12 2023

a: \(\dfrac{4}{9}=\dfrac{4\cdot2}{9\cdot2}=\dfrac{8}{18}< \dfrac{13}{18}\)

b: 34/-4=-8,5

Ta có: 8,5<8,6

=>-8,5>-8,6

=>\(\dfrac{34}{-4}>-8,6\)

c: \(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)

\(\dfrac{2022}{2023}=1-\dfrac{1}{2023}\)

Ta có: 2022<2023

=>\(\dfrac{1}{2022}>\dfrac{1}{2023}\)

=>\(-\dfrac{1}{2022}< -\dfrac{1}{2023}\)

=>\(-\dfrac{1}{2022}+1< -\dfrac{1}{2023}+1\)

=>\(\dfrac{2021}{2022}< \dfrac{2022}{2023}\)

22 tháng 12 2023

34/-4=-8,5 là sao v

6 tháng 3 2022

Ko tính đc bạn

6 tháng 3 2022

bn biết cách lm ko

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
Xét hiệu: 

$\frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}-(\sqrt{2022}+\sqrt{2023})$

$=(\frac{2022}{\sqrt{2023}}-\sqrt{2023})+(\frac{2023}{\sqrt{2022}}-\sqrt{2022})$

$=\frac{2022-2023}{\sqrt{2023}}+\frac{2023-2022}{\sqrt{2022}}$

$=\frac{1}{\sqrt{2022}}-\frac{1}{\sqrt{2023}}>0$

$\Rightarrow \frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}>\sqrt{2022}+\sqrt{2023}$

 

23 tháng 8 2023

\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)

\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)

\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)

\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)

Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:

\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)

23 tháng 8 2023

Thanks ạ

Số học sinh khối 6 sau 1 năm tăng thêm:

\(\dfrac{300-280}{280}=\dfrac{20}{280}\simeq7,14\%\)

27 tháng 1 2017

thiếu đề bạn ơi

28 tháng 1 2017

Bn cứ trả lời đi cx dc mà