Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
\(3^{34}\) và \(5^{20}\)
Ta có:
\(3^{34}>3^{30}\)
\(3^{30}=3^{3\cdot10}=\left(3^3\right)^{10}=27^{10}\)
\(5^{20}=5^{2\cdot10}=\left(5^2\right)^{10}=25^{10}\)
Vì `27 > 25`\(\Rightarrow27^{10}>25^{10}\)
\(\Rightarrow3^{34}>5^{20}\)
____
\(71^5\) và \(17^{20}\)
Ta có:
\(17^{20}=17^{4\cdot5}=\left(17^4\right)^5=83521^5\)
Vì `83521 > 71`
\(\Rightarrow83521^5>71^5\\ \Rightarrow 17^{20}>17^5.\)
Do 34 > 30 nên 3³⁴ > 3³⁰ (1)
Ta có:
3³⁰ = (3³)¹⁰ = 27¹⁰
5²⁰ = (5²)¹⁰ = 25¹⁰
Do 27 > 25 nên 27¹⁰ > 25¹⁰
⇒ 3³⁰ > 5²⁰ (2)
Từ (1) và (2) ⇒ 3³⁴ > 5²⁰
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
Hướng dẫn: Cách làm là chuyển số thập phân thành phân số (bằng cách nhân với 100) và chuyển hỗn số thành phân số, sau đó thực hiện phép tính.
Hướng dẫn: Cách làm là chuyển số thập phân thành phân số (bằng cách nhân với 100) và chuyển hỗn số thành phân số, sau đó thực hiện phép tính.
Ta thấy : \(2222^{3333}vs2^{300}:\hept{\begin{cases}2222>2\\3333>300\end{cases}\Rightarrow2222^{3333}>2^{300}}\)
Ta thấy : \(2222^{1111}=1111^{1111}.2^{1111}< 1111^{1111}.1111^{1110}=1111^{2221}\)
Ta thấy : \(54^{10}=\left(3^3\right)^{10}.2^{10}=3^{30}.2^{10}=3^{12}.3^{18}.2^{10}>3^{12}.7^{12}=21^{12}.\)
\(17^{20}=\left(17^4\right)^5=83521^5\)
\(31^{15}=\left(31^3\right)^5=29719^5\)
Vậy: \(17^{20}>31^{15}\)
1720 > 1620 = 165 . 1615 = (24)5 . 1615 = 220 . 1615 > 215 . 1615 = 3215 > 3115