Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dư trong phép chia cho \(x^2-x=x\left(x-1\right)\) là hằng số.
Gọi thương của phép chia là \(Q\left(x\right)\) và dư là \(r\), với mọi \(x\) ta có:
\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}=\left(x^2-x\right).Q\left(x\right)+\left(ax+b\right)\)
Với \(x=0\) thì \(f\left(0\right)=\left(0^2+0-1\right)^{10}+\left(0^2-0+1\right)^{10}=\left(0^2-0\right).Q\left(0\right)+r\)
Khi đó, \(2=r\)
Với \(x=1\) thì \(f\left(1\right)=\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}=\left(1^2-1\right).Q\left(1\right)+r\)
Do đó, \(2=r\)
Vậy, số dư của phép chia là \(2\)
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$