Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
718+18.3-1=717.7+17.3+3-1=717+17.3-1+717.6+3=(717+17.3-1)+9.717-3.717+3
=(717+17.3-1)+9.717-3(717-1)
Ta có 717-1 chia hết cho 6 => 3(717-1) chia hết cho 18=> chia hết cho 9
Mặt khác 717+17.3-1 và 9.717 chia hết cho 9 => 718+18.3-1 chia hết cho 9
chỉ cần áp dụng dấu hiệu chia hết cho 9 là OK
mà nói trước dấu hiệu chia hết cho 9 có đấy mấy chế
câu này mà cũng hỏi
A ko chia hết cho 9 vì 50+49+48+...+3+2+1=1275
mà 1275 ko chia hết cho 9
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Đặt A=\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2-n+1\right)\left(n^2+n+1\right)\)
Vì \(n⋮3\Rightarrow̸n=3k\pm1\)
Với n=3k+1 thì A=(3k+1-1)(3k+1+1)[(3k+1)^2-3k-1+1].[(3k+1)^2+3k+1+1]
\(=3k\left(3k+2\right)\left(9k^2+6k+1-3k-1+1\right)\left(9k^2+6k+1+3k+1+1\right)\)
\(=3k\left(3k+2\right)\left(9k^2+3k+1\right)\left(9k^2+9k+3\right)\)
\(=9k\left(3k+2\right)\left(9k^2+3k+1\right)\left(3k^2+3k+1\right)⋮9\)
Với n=3k-1 thì A=(3k-1-1)(3k-1+1)[(3k-1)^2-3k+1+1].[(3k-1)^2+3k-1+1]
\(=3k\left(3k-2\right)\left(9k^2-6k+1-3k+1+1\right)\left(9k^2-6k+1+3k-1+1\right)\)
\(=3k\left(3k-2\right)\left(9k^2-9k+3\right)\left(9k^2-3k+1\right)\)
\(=9k\left(3k-2\right)\left(3k^2-3k+1\right)\left(9k^2-3k+1\right)⋮9\)
Từ 2 trường hợp trên => đpcm
\(A=7^{18}+18.3-1=\left(7^{17}+17.3-1\right)+6.7^{17}+3\)
\(7^3\text{≡}1\left(mod9\right)\)
\(\Rightarrow\left(7^3\right)^5.7^2\text{≡}7^2\left(mod9\right)\)
\(7^{17}.6\text{≡}49.6\text{≡}6\left(mod9\right)\)
\(\Rightarrow6.7^{17}+3\text{≡}6+3\text{≡}0\left(mod9\right)\)
\(\Rightarrow A\)chia hết cho 9