Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bùi Phương Trang
Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n € N). Theo đề bài ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t € N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = ( t + 1 )2
= (n2 + 3n + 1)2
Vì n € N nên suy ra: (n2 + 3n + 1) € N.
=> Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
b) Vì \(3^{50}+1\) chia hết cho \(3\)
Mặt khác tích 2 số tự nhiên liên tiếp phải chia hết cho \(3\) (khi một trong \(2\) số chia hết cho \(3\) hoặc chia \(3\) dư \(2\) (khi \(1\) số chia \(3\) dư \(1\) và \(1\) số chia \(3\) dư \(2\)
\(3^{50}+1\) không phải tích của hai số tự nhiên liên tiếp
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt \(n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt\( n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Giả sử 350 + 1 là tích của 2 số tự nhiên liên tiếp a(a+1). Ta có:
\(a^2+a=3^{50}+1\Rightarrow4a^2+4a+1=4\cdot3^{50}+1\Rightarrow\left(2a+1\right)^2-\left(2\cdot3^{25}\right)^2=5\\ \)
\(\Rightarrow\left(2a+1-2\cdot3^{35}\right)\left(2a+1+2\cdot3^{35}\right)=5.\)
Suy ra \(2a+2\cdot3^{25}+1\)là ước của 5. vô lý vì \(2a+2\cdot3^{25}+1\)>> 5.
Vậy, 350 + 1 không thể là tích của 2 số tự nhiên liên tiếp .