K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

-24/35,-19/30,-25/47,-5/9,-23/49,0,-124/-2018

5 tháng 6 2018

bạn giải rõ ra được ko

\(\dfrac{-24}{35}< \dfrac{-19}{30}< \dfrac{-5}{9}< \dfrac{-25}{47}< \dfrac{-23}{49}< 0< \dfrac{124}{2011}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Cách 1: Ta có:

 \(\begin{array}{l}5\frac{1}{4} = \frac{{5.4 + 1}}{4} = \frac{{21}}{4} = \frac{{42}}{8}\\ - 2 = \frac{{ - 16}}{8}\\3,125 = \frac{{3125}}{{1000}} = \frac{{25}}{8}\\ - \frac{3}{2} = \frac{{ - 12}}{8}\end{array}\)

Vì -16 < -12 < 25 < 42 nên \(\frac{{ - 16}}{8} < \frac{{ - 12}}{8} < \frac{{25}}{8} < \frac{{42}}{8}\) hay -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

Cách 2: Ta có: \(5\frac{1}{4}\)= 5,25

\(\frac{{ - 3}}{2}\)= -1,5

Vì -2 < -1,5 < 0 < 3,125 < 5,25 nên -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

4 tháng 11 2018

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

15 tháng 7 2020

Giúp mik với 

15 tháng 7 2020

a,Sắp xếp:\(\frac{-7}{9};0;\frac{-40}{-50};\frac{27}{33};\frac{-6}{-4}\)

b,Sắp xếp:\(\frac{-14}{37};\frac{-14}{33};0;\frac{19}{19};\frac{17}{20};\frac{4}{3}\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\(6 = \sqrt {36} ; - 1,7 =  - \sqrt {2,89} \)

Vì 0 < 2,89 < 3 nên 0> \( - \sqrt {2,89}  >  - \sqrt 3 \) hay 0 > -1,7 > \( - \sqrt 3 \)

Vì 0 < 35 < 36 < 47  nên \(0 < \sqrt {35}  < \sqrt {36}  < \sqrt {47} \) hay 0 < \(\sqrt {35}  < 6 < \sqrt {47} \)

Vậy các số theo thứ tự tăng dần là: \( - \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47} \)

b) Ta có:

\(\sqrt {5\frac{1}{6}}  = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}}  =  - \sqrt {2,(3)} \); -1,5 = \( - \sqrt {2,25} \)

Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \( - \sqrt {2,25}  >  - \sqrt {2,3}  >  - \sqrt {2,(3)} \) hay 0 > -1,5 > \( - \sqrt {2,3}  >  - \sqrt {2\frac{1}{3}} \)

Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3}  > \sqrt {5,1(6)} \)> 0 hay \(\sqrt {5,3}  > \sqrt {5\frac{1}{6}}  > 0\)

Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \( - \sqrt {2,3} ; - \sqrt {2\frac{1}{3}} \)