Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=\left(a-c\right)^2+2b\left(a-c\right)+b^2-\left(a-c\right)^2-2ab+2bc\)
\(=2b\left(a-c\right)+b^2-2ab+2bc\)
\(=2ab-2bc+b^2-2ab+2bc=b^2\)
Ta có : (a + b - c)2 + (a - b + c)2 - 2(b - c)2
= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - 2(b2 - 2bc + c2)
= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - b2 + 2bc - c2
= 2a2 + b2 + c2 - 2bc
cho a,b,c khac nhau doi mot va 1/a+1/b+1/c=0.rut gon cac bieu thuc
N=bc/a^2+2bc+CA/B^2+2AC+AB/C^2+2AB
\(\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left(1-a^2+b^2+c^2\right)\)
\(=\left(a^2+b^2+c^2\right)\left[\left(1-a\right)\left(1+a\right)+b^2+c^2\right]\)
mik làm thế này k bít có đúng k
Bài làm
( a2 + b2 + c2 ) - ( a2 + b2 + c2 )2
= ( a2 + b2 + c2 ) - ( a2 + b2 + c2 + a2b2 + a2c2 + b2c2 )
= a2 + b2 + c2 - a2 - b2 - c2 - a2b2 - a2c2 - b2c2
= -( a2b2 + a2c2 + b2c2 )
a+b+c=0 <=> c = -a-b
M = a3+b3+c(a2+b2)-abc
M = a3+b3+(-a-b)(a2+b2)-abc
M = a3+b3-a3-a2b-ab2-b3-abc
M = -a2b-ab2-abc
M = -ab(a+b+c)
M = -ab.0 = 0
(a + b + c)^2 + (a - b - c)^2 +( b - c - a) ^2 + (c - a - b)^2
= (a + b + c)^2 + (a + b - c)^2 + (a - b - c)^2 + (a - b + c)^2
= (a + b)^2 + 2c(a + b) + c^2 + (a + b)^2 - 2c(a + b) + c^2 +
(a - b)^2 - 2c(a - b) + c^2 + (a - b)^2 + 2c(a - b) +c^2
= 2(a + b)^2 + 2c^2 + 2(a - b)^2 + 2c^2
= 2[(a + b)^2 + (a - b)^2] + 4c^2
=2(2a^2 + 2b^2) + 4c^2
= 4(a^2 + b^2 + c^2)