K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 7 2016
Xét số hạng tổng quát:
\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)
= \(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)
Thay k từ 1 đến 12 ta được:
A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)
31 tháng 12 2019
Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath
\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(52^4+\frac{1}{4}\right)}\)
\(=\frac{\left(1+1+\frac{1}{2}\right)\left(1-1+\frac{1}{2}\right)....\left(11^2-11+\frac{1}{2}\right)}{\left(2+2^2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)....\left(12^2-12+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)....\left(11.12+\frac{1}{2}\right)}{\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(12.13+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}}{12.13+\frac{1}{2}}\)
\(=\frac{1}{313}\)
Chúc bạn học tốt !!!