K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3x-2y+\left\{x-\left(y+2x-5x-y\right)-8x+10y\right\}\)

\(=3x-2y+\left\{-7x+10y+3x\right\}\)

\(=3x-2y+10y-4x\)

=-x+8y

\(=-\left(a^2-2ab+b^2\right)+8\left(a^2+2ab+b^2\right)\)

\(=-a^2+2ab-b^2+8a^2+16ab+8b^2\)

\(=7a^2+18ab+7b^2\)

5 tháng 7 2017

co mũ

24 tháng 9 2023

Tham khảo:

a) Vẽ đường thẳng \(\Delta : - 2x + y - 1 = 0\) đi qua hai điểm \(A(0;1)\) và \(B\left( { - 1; - 1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 - 1 =  - 1 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

b) Vẽ đường thẳng \(\Delta : - x + 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)

Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \( - 1 + 2.0 =  - 1 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), không chứa điểm A (1;0)

(miền không gạch chéo trên hình)

c) Vẽ đường thẳng \(\Delta :x - 5y = 2\) đi qua hai điểm \(A(2;0)\) và \(B\left( { - 3; - 1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 5.0 = 0 < 2\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

d) Vẽ đường thẳng \(\Delta : - 3x + y + 2 = 0\) đi qua hai điểm \(A(0; - 2)\) và \(B\left( {1;1} \right)\)

Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 3.0 + 0 + 2 = 2 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa điểm O (0;0)

(miền không gạch chéo trên hình)

e) Ta có:  \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow  - 2x + 4y - 8 < 0 \Leftrightarrow  - x + 2y - 4 < 0\)

Vẽ đường thẳng \(\Delta : - x + 2y -4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {-4;0} \right)\)

Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 0 + 2.0 -4 = -4 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa điểm O (0;0)

(miền không gạch chéo trên hình)

20 tháng 8 2019

Ta có:

f(x) = x4 – x2 + 6x – 9 = x4 – (x2 – 6x +9) = – (x-3)2

= (x2 –x + 3).(x2 + x - 3)

+ Tam thức x2 – x + 3 có Δ = -11 < 0, a = 1 > 0 nên x2 – x + 3 > 0 với ∀ x ∈ R.

+ Tam thức x2 + x – 3 có hai nghiệm Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Ta có bảng xét dấu sau:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Tam thức x2 - 2x + 2 có Δ = -4 < 0, hệ số a = 1 > 0 nên x2 - 2x + 2 > 0 với ∀ x ∈ R

Tam thức x2 - 2x - 2 có hai nghiệm là x1 = 1 - √3; x2 = 1 + √3.

Tam thức x2 - 2x có hai nghiệm là x1 = 0; x2 = 2

Ta có bảng xét dấu :

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận : g(x) < 0 khi x ∈ (1 - √3; 0) ∪ (2; 1 + √3)

g(x) = 0 khi x = 1- √3 hoặc x = 1 + √3

g(x) > 0 khi x ∈ (-∞; 1 - √3) ∪ (0; 2) ∪ (1 + √3; +∞)

g(x) không xác định khi x = 0 và x = 2.

25 tháng 11 2021

\(ĐK:x\ge\dfrac{1}{5};y\ge\dfrac{3}{8}\)

\(PT\left(1\right)\Leftrightarrow\dfrac{3x^2-3y^2}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=3\left(x+y\right)\\ \Leftrightarrow3\left(x+y\right)\left(\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x-y=\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}\\ \Leftrightarrow\left(x-y\right)=\dfrac{3\left(x^2-y^2\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}\\ \Leftrightarrow\left(x-y\right)\left[\dfrac{3\left(x+y\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}-1\right]=0\)

\(\Leftrightarrow x=y\)

Với \(x+y=0\Leftrightarrow x=-y\), thay vào PT 2

\(\Leftrightarrow3\left(-y\right)\left(y-7\right)+10=\sqrt{10\left(-y\right)-2}+2\sqrt{8y-3}\\ \Leftrightarrow3y\left(7-y\right)+10=\sqrt{-10y-2}+2\sqrt{8y-3}\)

ĐK: \(\left\{{}\begin{matrix}-10y-2\ge0\\8y-3\ge0\end{matrix}\right.\Leftrightarrow y\in\varnothing\)

Với \(x-y=0\Leftrightarrow x=y\), thay vào PT 2

\(\Leftrightarrow3x^2-21x+10=\sqrt{10x-2}+2\sqrt{8x-3}\left(x\ge\dfrac{3}{8}\right)\\ \Leftrightarrow3x^2-24x+9=\sqrt{10x-2}-\left(x+1\right)+2\sqrt{8x-3}-2x\)

\(\Leftrightarrow3\left(x^2-8x+3\right)=\dfrac{-x^2+8x-3}{\sqrt{10x-2}+\left(x+1\right)}+\dfrac{2\left(-x^2+8x-3\right)}{\sqrt{8x-3}+x}\\ \Leftrightarrow\left(x^2-8x+3\right)\left(3+\dfrac{1}{\sqrt{10x-2}+x+1}+\dfrac{2}{\sqrt{8x-3}+x}\right)=0\)

Dễ thấy ngoặc lớn vô nghiệm với \(x\ge\dfrac{3}{8}>0\)

\(\Leftrightarrow x^2-8x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{13}\left(n\right)\\x=4-\sqrt{13}\left(n\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4+\sqrt{13}\\y=4-\sqrt{13}\end{matrix}\right.\)

Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(4+\sqrt{13};4+\sqrt{13}\right);\left(4-\sqrt{13};4-\sqrt{13}\right)\right\}\)

29 tháng 11 2021

bạn làm nhầm rồi hay sao đấy

mình tìm ra cách rồi là

Từ pt(1) \(\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}+\sqrt{\left(2y+x\right)^2+\left(x-y\right)^2}=3\left(x+y\right)\) 

Đặt a=2x+y;b=2y+x\(\Rightarrow\) 3(x+y)=a+b;x-y=a-b

rồi bình phương ra

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

11 tháng 1 2017

Đáp án: C