Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .
= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .
= 1/2 - 1/ 3n+2 .
= 3n + 2 - 2 / 2 .( 3n+2 ) .
= 3n / 2.(3n+2) .
Đặt :
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)
@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:
\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)
\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)
\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)
đặt \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{65.68}\right)\)là A
Ax=\(\frac{19}{68}+\frac{7}{34}=\frac{33}{68}\)
3A=\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{11}{8.11}+...+\frac{1}{65.68}\right)\)
3A=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\)
3A=\(\frac{1}{2}-\frac{1}{68}=\frac{33}{68}\)
A=33/68:3=11/68
\(\Rightarrow\)33/68:11/68=3
vậy x= 3
\(B=\left(\frac{3}{5}\right)^2\cdot5^2-\left(2\frac{1}{4}\right)^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=\left(\frac{3}{5}\cdot5\right)^2-\left(\frac{9}{4}:\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=3^2-\left(\frac{9}{4}\cdot\frac{4}{3}\right)^3+\frac{1}{2}\)
\(B=3^2-3^3+\frac{1}{2}=-18+\frac{1}{2}=-\frac{35}{2}\)
\(3S=3\left(\frac{1}{2.5}+....+\frac{1}{\left(3n+1\right)\left(3n+2\right)}\right)\)
Đến đây thì bạn làm như dạng đơn giản nhé
<=> \(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
<=>\(x+3=308\)
<=>\(x=305\)
Ta có:
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(3n+2\right).\left(3n+5\right)}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{\left(3n+2\right).\left(3n+5\right)}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n+2}-\frac{1}{3n+5}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+5}\right)\)
\(\Rightarrow\frac{1}{6}-\frac{1}{9n+15}\)