Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3\left(x-2\right)}{\left(x-2\right)^3}=\dfrac{3}{\left(x-2\right)^2}\)
b: \(=\dfrac{x^2\left(x+2\right)}{\left(x+2\right)^3}=\dfrac{x^2}{\left(x+2\right)^2}\)
A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
A = \(\left(3x-1+2x+1\right)^2\)
A)
<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1
<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)
<=> 25x^2
B)
<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3
<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)
<=> 35
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
\(=4\)
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=\left(2x^3-5x^3\right)+\left(x^2-x^2\right)-3x\)
\(=-3x^3-3x\)
\(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)-\left(6x+5x\right)+24\)
\(=-11x+24\)
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
c) Ta có: \(C=4\left(3x-2\right)^2+\left(4-x\right)^2-\left(6x-4\right)\left(8-2x\right)\)
\(=4\left(9x^2-12x+4\right)+x^2-8x+16-\left(48x-12x^2-32+8x\right)\)
\(=36x^2-48x+16+x^2-8x+16-48x+12x^2+32-8x\)
\(=49x^2-112x+64\)
\(=\left(7x-8\right)^2\)
\(=\left(7\cdot149-8\right)^2\)
\(=1071225\)
d) \(\left(3x-4\right)^2-9\left(x-2\right)\left(x+2\right)\)
\(=9x^2-24x+16-9\left(x^2-4\right)\)
\(=9x^2-24x+16-9x^2+36\)
\(=-24x+52\)
\(=-24\cdot\left(-2\right)+52\)
=48+52=100
e) Ta có: \(x\left(x-3\right)^2-\left(x-1\right)\left(x+5\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x\left(x^2-6x+9\right)-\left(x^2+4x-5\right)-x\left(x^2-4\right)\)
\(=x^3-6x^2+9x-x^2-4x+5-x^3+4x\)
\(=-7x^2+9x+5\)
\(=-7\cdot\left(-1\right)^2+9\cdot\left(-1\right)+5\)
\(=-7-9+5\)
=-16+5=-11
\(=6x^2-24x+30x-6x^2-10+2x\)
\(=8x-10\)