Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)
(bất đẳng thức tam giác)
\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)
Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)
thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)
=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)
áp dụng bđt tam giác ta có :
a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2
Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:
\(b^2< ab+bc;c^2< ac+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)
\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)
Vậy A > 0
3/ \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
bài 1
theo bài ra ta có
a + b + c = 0 => c = -[a+b] [ 1 ]
Thay (1) vao a^3+b^3+c^3 ta có:
a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]
<=>a^3+b^3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.