Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng HĐT mở rộng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(do a + b + c = 0)
\(\Rightarrow a^3+b^3+c^3=3abc\)
2 )Vì a;b;c là độ dài 3 cạch của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\a+b>c\end{cases}}\)(bđt tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
3 ) \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x^3+y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x+y\right)\left(x^2-xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4-x^3y+x^2y^2-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\left(x^2+y^2\right)\ge0\)(luôn đúng với mọi \(x;y\ne0andx+y\ge0\))
Vậy \(x^5+y^5\ge x^4y+xy^4\)
mk làm câu 1) CMR: x5 + y5 \(\ge\) x4y + xy4 với x,y \(\ne\) 0 và x + y \(\ge\) 0.
Giải
Ta có: \(x^5+y^5\ge x^4y+xy^4\) (**)
\(\Leftrightarrow\left(x^5-x^4y\right)-\left(xy^4-y^5\right)\ge0\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (*)
Ta thấy: \(\left(x-y\right)^2\ge0\), x + y \(\ge\) 0(gt), x2 + y2 \(\ge\) 0,do đó BĐT(*) luôn đúng.
Vậy BĐT(**) được chứng minh, dấu "=" xảy ra khi x = y.
- Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
- Cho ba số a, b, c khác 0 thỏa nãm đẳng thức :
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)
Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 1:
Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)
Xét hiệu:
\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)\)
\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)
Vì \(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm
\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)
\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)
Ta có đpcm.
Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:
\(111(x-2)\geq 1998\)
\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)
\(\Leftrightarrow x\geq 20\)
Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.
3/ \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
bài 1
theo bài ra ta có
a + b + c = 0 => c = -[a+b] [ 1 ]
Thay (1) vao a^3+b^3+c^3 ta có:
a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]
<=>a^3+b^3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.