Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc
= 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc
= 3abc ( đpcm)
mk làm câu 1) CMR: x5 + y5 \(\ge\) x4y + xy4 với x,y \(\ne\) 0 và x + y \(\ge\) 0.
Giải
Ta có: \(x^5+y^5\ge x^4y+xy^4\) (**)
\(\Leftrightarrow\left(x^5-x^4y\right)-\left(xy^4-y^5\right)\ge0\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (*)
Ta thấy: \(\left(x-y\right)^2\ge0\), x + y \(\ge\) 0(gt), x2 + y2 \(\ge\) 0,do đó BĐT(*) luôn đúng.
Vậy BĐT(**) được chứng minh, dấu "=" xảy ra khi x = y.
1) Ta có: a + b + c = 0 <=> \(a+b=-c\)
=> \(\left(a+b\right)^3=-c^3\)
=> \(a^3+3ab\left(a+b\right)+b^3\) = \(-c^3\)
=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)
=> \(a^3+b^3+c^3=-3ab.\left(-c\right)\) ( Vì \(a+b=-c\))
=> \(a^3+b^3+c^3=3abc\) => đpcm
2) Vì a,b,c là độ dài 3 cạnh của tam giác
=> a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b
Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)
\(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)
\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)
=> \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2
=> đpcm
1a) 3x2+2x-1=3x2-x+3x-1=x(3x-1)+(3x-1)=(3x-1)(x+1)
b)=x3+3x2+3x2+9x+2x+6=x2(x+3)+3x(x+3)+2(x+3)=(x+3)(x2+3x+2)=(x+3)(x2+2x+x+2)=(x+3)[x(x+2)+(x+2)]=(x+3)(x+2)(x+1)
c)=(x4+2x2+1)-4=(x2+1)2-22=(x2+1-2)(x2+1+2)=(x2-1)(x2+3)=(x+1)(x-1)(x2+3)
d)=a(b+c)+(b+c)2=(b+c)(a+b+c)
e)=(a-b)3+c3+3ab(a-b)+3abc=(a-b+c)(a2-2ab+b2+2ac-2bc+c2)+3ab(a-b+c)=(a-b+c)(a2+ab+b2+2ac-2bc+c2)=(a-b+c)(b-c)2(a2+ab+2ac)
8)12 ' = 1 / 5 (h)
3 ' = 1 / 20 (h).
gọi x ( km/h) là vận tốc người II ; y ( km) là chiều dài đoạn đường đua.
( điều kiện : x >= 3 ; y > 0)
vận tốc motô I là x + 15 ( km/h)
vận tốc motô III là x - 3 ( km/h)
thời gian của người II là y / x (h)
thời gian của người I là y / ( x + 15) (h)
thời gian của người III là y / ( x - 3) (h)
theo đề bài ta có hệ phương trình
y / x - y / ( x + 15) = 1 / 5
- y / x + y / ( x - 3) = 1 / 20
<=>
( xy + 15y - xy) / x ( x + 15) = 1 / 5
( xy - xy + 3y) / x ( x - 3) = 1 / 20
<=>
15y / x ( x + 15) = 1 / 5 ( điều kiện: x # 0 ; x# -15, x# 3 để mẫu hợp lý)
3y / x ( x - 3) = 1 / 20
<=>
75y = x ( x + 15)
60y = x ( x - 3)
<=> (*)
75y / x = x + 15 ( tách ra x + 15 = x - 3 + 18)
60y / x = x - 3
đặt a = 15y / x ( x#0) ; b= x - 3
(*) <=>
5a = b + 18
4a = b
<=>
a = 18
b = 72
=>
x = 75( nhận)
y = 90 (nhận )
vậy vận tốc người I là 75 + 15 = 90 (km/h)
vận tốc người III là 75 - 3 = 72 (km/h)
vận tốc người II là 75 (km/h)
thời gian người II là 90 / 75 = 1,2 (h)
thời gian người I là 90 / ( 75 + 15) = 1 (h)
thời gian người III là 90 / ( 75 - 3) = 1,25 (h)
B1
1. = (x+1).(3x-1)
2.=(x+1).(x+2).(x+3)
3. = (x-1).(x+1).(x^2+3)
4. = (b+c).(a+b+c)
5. = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
k mk nha bạn
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)Thay vào \(P\)ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a\cdot2a\cdot2a}{a^3}=\frac{8a^3}{a^3}=8\)
1) ta có (a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2b+3c2a+6abc
=a3+b3+c3+3a2b+3b2a+3abc+3b2c+3c2b+3abc+3a2c+3c2a+3abc-3abc
=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
=>(a+b+c)3 =a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc (1)
Thay a+b+c=0 vào (1) ta được:
0=a3+b3+c3+3.0(ab+bc+ac) -3abc
<=>0=a3+b3+c3-3abc
<=>a3+b3+c3=3abc
1) Áp dụng HĐT mở rộng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(do a + b + c = 0)
\(\Rightarrow a^3+b^3+c^3=3abc\)
2 )Vì a;b;c là độ dài 3 cạch của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\a+b>c\end{cases}}\)(bđt tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
3 ) \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x^3+y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x+y\right)\left(x^2-xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4-x^3y+x^2y^2-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\left(x^2+y^2\right)\ge0\)(luôn đúng với mọi \(x;y\ne0andx+y\ge0\))
Vậy \(x^5+y^5\ge x^4y+xy^4\)