K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)

=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)

10 tháng 3 2020

áp dụng bđt tam giác ta có : 

a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2

10 tháng 10 2017

Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)

mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)

==> \(a-b+c>0\)và \(a+b-c>0\)

Nhân vế theo vế hai biểu thức trên với nhau ta có:

\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm

Nhớ k mik nha

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

5 tháng 3 2016

a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2

b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2

a−c<b<=>a2+c2−2ac<b2

chuyển qua là được

5 tháng 3 2016

cảm ơn bạn nhiều nha :)

1 tháng 10 2016

Tuyển tập Bất đẳng thức  Trần Sĩ Tùng  4 III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki  1. Chứng minh: (ab + cd)2 £ (a2 + c2)(b2 + d2)    BĐT Bunhiacopxki 2. Chứng minh: + £sinx cosx 2 3. Cho 3a – 4b = 7.  Chứng minh: 3a2 + 4b2 ³ 7. 4. Cho 2a – 3b = 7.  Chứng minh:  3a2 + 5b2 ³ 72547. 5. Cho 3a – 5b = 8.  Chứng minh:  7a2 + 11b2 ³ 2464137. 6. Cho a + b = 2.  Chứng minh:  a4 + b4 ³ 2. 7. Cho a + b ³ 1 Chứng minh: + ³2 2 1a b2  Lời giải:  I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1.  Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 (*)  (*) Û + +æ ö- ³ç ÷è ø33 3a b a b02 2 Û ( )( )+ - ³23a b a b 08. ĐPCM. 2.  Chứng minh: + +£ 2 2a b a b2 2 («)  ÷ a + b £ 0 , («) luôn đúng.  ÷ a + b > 0 , («) Û + + +- £2 2 2 2a b 2ab a b04 2 Û ( )- ³2a b04 , đúng.   Vậy: + +£ 2 2a b a b2 2. 3.  Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 Û ( )+ +£3 3 3a b a b8 2   Û ( )( )- - £2 23 b a a b 0 Û ( ) ( )- - + £23 b a a b 0, ĐPCM. 4.  Cho a, b > 0 . Chứng minh: + ³ +a ba bb a  («)   («) Û + ³ +a a b b a b b a Û ( ) ( )- - - ³a b a a b b 0  Û ( )( )- - ³a b a b 0 Û ( ) ( )- + ³2a b a b 0, ĐPCM. 5.  Chứng minh: Với a ³ b ³ 1:  + ³++ +2 21 1 21 ab1 a 1 b («)  Trần Sĩ Tùng  Tuyển tập Bất đẳng thức  1 PHẦN I: LUYỆN TẬP CĂN BẢN    I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1.  Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 2.  Chứng minh: + +£ 2 2a b a b2 2 3.  Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 4.  Cho a, b > 0 . Chứng minh: + ³ +a ba bb a 5.  Chứng minh: Với a ³ b ³ 1:  + ³++ +2 21 1 21 ab1 a 1 b 6.  Chứng minh: ( )+ + + ³ + +2 2 2a b c 3 2 a b c ;  a , b , c Î R 7.  Chứng minh: ( )+ + + + ³ + + +2 2 2 2 2a b c d e a b c d e 8.  Chứng minh: + + ³ + +2 2 2x y z xy yz zx 9. a. Chứng minh: + + + +³ ³a b c ab bc ca; a,b,c 03 3  b. Chứng minh: + + + +æ ö³ ç ÷è ø22 2 2a b c a b c3 3 10.  Chứng minh: + + ³ - +22 2ab c ab ac 2bc4 11.  Chứng minh: + + ³ + +2 2a b 1 ab a b 12.  Chứng minh: + + ³ - +2 2 2x y z 2xy 2xz 2yz 13.  Chứng minh: + + + ³ - + +4 4 2 2x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ³ 1 thì: + ³3 3 1a b4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh:       a.  ab + bc + ca £ a2 + b2 + c2 < 2(ab + bc + ca).       b.  abc ³ (a + b – c)(a + c – b)(b + c – a)       c.  2a2b2 + 2b2c2 + 2c2a2 – a4 – b4 – c4 > 0

11 tháng 8 2015

Xét hiệu: (a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab) = [(a-b)2 - c2 ]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c) = A

Vì a; b;c là 3 cạnh của tam giá => a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

bài làm

Xét hiệu:

(a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab)

= [(a-b)2 - c]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c)

= A

Vì a; b;c là 3 cạnh của tam giá

=> a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

=>ĐpCm

Hok tốt

 

11 tháng 6 2016

bài này dễ

10 tháng 8 2016

Ta có :

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)

Áp dụng bất đẳng thức tam giác thì ta có : 

\(b+c-a>0\)

\(a+c-b>0\)

\(a+b-c>0\)

Hiển nhiên \(a+b+c>0\)

\(A\)là tích của 4 số dương nên \(A>0.\)

Vậy \(A>0.\)

10 tháng 8 2016

=(2ab−a2−b2+c2)(2ab+a2+b2−c2)

=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]

=[c2−(a−b)2][(a+b)2−c2]

=(b+c−a)(a+c−b)(a+b−c)(a+b+c)

Áp dụng bất đẳng thức tam giác thì ta có : 

b+c−a>0

a+c−b>0

a+b−c>0    a+b+c>0

A  A là tích của 4 số dương nên A>0.

Vậy A>0.

10 tháng 10 2017

>0 hay>2 vậy bạn?

10 tháng 10 2017

>0 bạn nhé