K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

ta thấy (l2x-4l-2)^2016 là số dương

            -l-5x+15l^2017 là số âm

nên ko có giá trị phù hợp x

20 tháng 2 2019

Xét:\(-\left|-5x+15\right|^{2017}\le0\)

      \(\left(\left|2x-4\right|-2\right)^{2016}\ge0\)

  Mà:\(\left(\left|2x-4\right|-2\right)^{2016}=-\left|-5+15\right|^{2017}\)

\(\Rightarrow\)x thuộc \(\varnothing\)hay không có giá trị phù hợp của x

a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)

=>16x-7=13x+2

=>3x=9

hay x=3

b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)

=>x+2017=0

hay x=-2017

e: \(\left(2x-3\right)^2=144\)

=>2x-3=12 hoặc 2x-3=-12

=>2x=15 hoặc 2x=-9

=>x=15/2 hoặc x=-9/2

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

19 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)

Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)

Vậy các cặp (x;y) là (2;10);(-2;-10)

19 tháng 1 2018

cảm ơn

2 tháng 8 2019

a) \(\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

\(\Leftrightarrow\frac{x+2}{12}+\frac{x+2}{13}-\frac{x+2}{14}-\frac{x+2}{15}=0\)

\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)

Vì \(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}>0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

b) \(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)

\(\Leftrightarrow\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2}{2018}+1+\frac{x+1}{2019}+1\)

\(\Leftrightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{2018}-\frac{x+2020}{2019}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)

\(\Rightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

2 tháng 8 2019

a) \(\left(x+2\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)

=>\(x+2=0\)

=>\(x=-2\)

nếu có sai thì mong bn thông cảm nha

16 tháng 10 2017

có/x+y/ lớn hơn hoặc bằng

/x/+/y/ dấu bằng xảy ra <=>

xy lớn hơn hoặc bằng 0

mà xy=1 =>/x+y/=/x/+/y/ (1)

lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0

=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)

từ (1) và (2)

=>/x+y/ lớn hơn hoặc bằng 2

=> MIN /x+y/ =2

dấu bằng xảy ra

<=> /x+y/=2

hay /x/+/y/ \(=2\sqrt{xy}\)

=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

=>\(\sqrt{x}=\sqrt{y}=>x=y\)

mà /x+y / =2

TH1 x+y=2=>x=y=1

thay vào M ta tính được M=\(\dfrac{3}{4}\)

TH2 x+y =-2 =>x=y=-1

thay vào M ta được

M=\(\dfrac{3}{4}\)

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

3 tháng 11 2017

Vì /2x+1/ ≥ 0

=> /2x+1/ + 2017 ≥ 2017

=> 2016/ /2x+1/ +2017 ≤ 2016/2017

Vậy Bmax = 2016/2017 khi /2x+1/ = 0 => 2x+1 =0 => 2x=-1

=> x = -1/2

1 tháng 8 2017

\(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)

\(\Rightarrow\left(5x-2\right)^{100}-\left(5x-2\right)^{10}=0\)

\(\Rightarrow\left(5x-2\right)^{10}\left[\left(5x-2\right)^{90}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(5x-2\right)^{10}=0\\\left(5x-2\right)^{90}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(5x-2\right)^{10}=0\\\left(5x-2\right)^{90}=1\Rightarrow5x-2=\pm1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5x-2=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\5x=1;3\Rightarrow x=\dfrac{1}{5};\dfrac{3}{5}\end{matrix}\right.\)

\(\left(\dfrac{2x-3}{4}\right)^{2016}+\left(\dfrac{3y+4}{5}\right)^{2018}=0\)

\(\left\{{}\begin{matrix}\left(\dfrac{2x-3}{4}\right)^{2016}\ge0\forall x\\\left(\dfrac{3y+4}{5}\right)^{2018}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2x-3}{4}\right)^{2016}+\left(\dfrac{3y+4}{5}\right)^{2014}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(\dfrac{2x-3}{4}\right)^{2016}=0\Rightarrow\dfrac{2x-3}{4}=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\dfrac{3}{2}\\\left(\dfrac{3y+4}{5}\right)^{2018}=0\Rightarrow\dfrac{3y+4}{5}=0\Rightarrow3y+4=0\Rightarrow3y=-4\Rightarrow y=\dfrac{-4}{3}\end{matrix}\right.\)

21 tháng 6 2017

\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)

\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)

\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)

\(\Rightarrow x+2018=0\)

\(\Rightarrow x=-2018\)

21 tháng 6 2017

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)

\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)

\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)