Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)
Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)
\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
Thay x=2 và y=-1 vào biểu thức P ta có:
\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)
Vậy ................
có/x+y/ lớn hơn hoặc bằng
/x/+/y/ dấu bằng xảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 =>/x+y/=/x/+/y/ (1)
lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0
=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)
từ (1) và (2)
=>/x+y/ lớn hơn hoặc bằng 2
=> MIN /x+y/ =2
dấu bằng xảy ra
<=> /x+y/=2
hay /x/+/y/ \(=2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}=>x=y\)
mà /x+y / =2
TH1 x+y=2=>x=y=1
thay vào M ta tính được M=\(\dfrac{3}{4}\)
TH2 x+y =-2 =>x=y=-1
thay vào M ta được
M=\(\dfrac{3}{4}\)