\(\left(\dfrac{2x-3}{4}\right)^{2016}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)

\(\Rightarrow\left(5x-2\right)^{100}-\left(5x-2\right)^{10}=0\)

\(\Rightarrow\left(5x-2\right)^{10}\left[\left(5x-2\right)^{90}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(5x-2\right)^{10}=0\\\left(5x-2\right)^{90}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(5x-2\right)^{10}=0\\\left(5x-2\right)^{90}=1\Rightarrow5x-2=\pm1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5x-2=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\5x=1;3\Rightarrow x=\dfrac{1}{5};\dfrac{3}{5}\end{matrix}\right.\)

\(\left(\dfrac{2x-3}{4}\right)^{2016}+\left(\dfrac{3y+4}{5}\right)^{2018}=0\)

\(\left\{{}\begin{matrix}\left(\dfrac{2x-3}{4}\right)^{2016}\ge0\forall x\\\left(\dfrac{3y+4}{5}\right)^{2018}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2x-3}{4}\right)^{2016}+\left(\dfrac{3y+4}{5}\right)^{2014}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(\dfrac{2x-3}{4}\right)^{2016}=0\Rightarrow\dfrac{2x-3}{4}=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\dfrac{3}{2}\\\left(\dfrac{3y+4}{5}\right)^{2018}=0\Rightarrow\dfrac{3y+4}{5}=0\Rightarrow3y+4=0\Rightarrow3y=-4\Rightarrow y=\dfrac{-4}{3}\end{matrix}\right.\)

a: \(=\dfrac{2}{5}x^2y^2-2x^2y+4xy^2\)

b: \(=x^2y^2+5xy-xy-5=x^2y^2+4xy-5\)

c: \(=-10x^5+5x^3-2x^2\)

d: \(=x^3-2x^2y+3x^2y-6xy^2=x^3+x^2y-6xy^2\)

29 tháng 7 2018

mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho

29 tháng 7 2018

Bài 1:

a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)

b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)

10 tháng 9 2017

a/ \(\dfrac{1}{3}-\dfrac{2}{5}+3x=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1}{15}+3x=\dfrac{3}{4}\)

\(\Leftrightarrow3x=\dfrac{49}{60}\)

\(\Leftrightarrow x=\dfrac{49}{180}\)

Vậy....

b/ \(\dfrac{3}{2}-1+4x=\dfrac{2}{3}-7x\)

\(\Leftrightarrow\dfrac{1}{2}+4x=\dfrac{2}{3}-7x\)

\(\Leftrightarrow4x+7x=\dfrac{2}{3}-\dfrac{1}{2}\)

\(\Leftrightarrow11x=\dfrac{1}{6}\)

\(\Leftrightarrow x=\dfrac{1}{66}\)

Vậy....

c/ \(2\left(\dfrac{3}{4}-5x\right)=\dfrac{4}{5}-3x\)

\(\Leftrightarrow\dfrac{3}{2}-10x=\dfrac{4}{5}-3x\)

\(\Leftrightarrow-10x+3x=\dfrac{4}{5}-\dfrac{3}{2}\)

\(\Leftrightarrow-7x=-\dfrac{7}{10}\)

\(\Leftrightarrow x=-\dfrac{1}{10}\)

Vậy .....

10 tháng 9 2017

d/ \(4\left(\dfrac{1}{2}-x\right)-5\left(x-\dfrac{3}{10}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow2-4x-5x-\dfrac{3}{2}=\dfrac{7}{4}\)

\(\Leftrightarrow2+\left(-4x\right)+\left(-5x\right)+\left(\dfrac{-3}{2}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow-9x+\dfrac{1}{2}=\dfrac{7}{4}\)

\(\Leftrightarrow-9x=\dfrac{5}{4}\)

\(\Leftrightarrow x=-\dfrac{5}{36}\)

12 tháng 9 2017

\(a,\left|2x+3\right|+x=4\)

\(\Rightarrow\left|2x+3\right|=4-x\)

Điều kiện :\(4-x\ge0\Rightarrow x\le4\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=4-x\\2x+3=x-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+x=4-3\\2x-x=-4-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=1\\x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-7\end{matrix}\right.\)

Xét cả 2 trường hợp trên đều thỏa mãn điều kiện

Vậy ...

19 tháng 9 2017

cau nay chac chan duoc gp

a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)

\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)

=>x=13/12

b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)

\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)

\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)

\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)

\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)

d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)

\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)

e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)

=>x+2020=0

hay x=-2020

3 tháng 8 2017

a) \(\left(x-2\right)^3=-27\)

\(\Rightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Rightarrow x-2=-3\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\left(2x+1\right)^4=81\)

\(\Rightarrow\left(2x+1\right)^4=3^4=\left(-3\right)^4\)

\(\left\{{}\begin{matrix}\left(2x+1\right)^4=3^4\Rightarrow2x+1=3\Rightarrow x=1\\\left(2x+1\right)^4=\left(-3\right)^4\Rightarrow2x+1=-3\Rightarrow x=-2\end{matrix}\right.\)

Vậy \(x=1;x=-2\)

c) Bạn xem lại đề bài nhé!

d) \(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)

\(\Rightarrow\left(5x-2\right)^{10}-\left(5x-2\right)^{100}=0\)

\(\Rightarrow\left(5x-2\right)^{10}.\left[1-\left(5x-2\right)^{90}\right]=0\)

+) TH1: \(\left(5x-2\right)^{10}=0\)

\(\Rightarrow5x-2=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

+) TH2: \(1-\left(5x-2\right)^{90}=0\)

\(\Rightarrow\left(5x-2\right)^{90}=1\)

\(\Rightarrow\left(5x-2\right)^{90}=1^{90}=\left(-1\right)^{90}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(5x-2\right)^{90}=1^{90}\Rightarrow5x-2=1\Rightarrow x=\dfrac{3}{5}\\\left(5x-2\right)^{90}=\left(-1\right)^{90}\Rightarrow5x-2=-1\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{5};\dfrac{2}{5};\dfrac{3}{5}\right\}\)

3 tháng 8 2017

đúng rồi có sai đâu với trả lời giúp mình bài hình với

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô