Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-2\right)^3=-27\)
\(\Rightarrow\left(x-2\right)^3=\left(-3\right)^3\)
\(\Rightarrow x-2=-3\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
b) \(\left(2x+1\right)^4=81\)
\(\Rightarrow\left(2x+1\right)^4=3^4=\left(-3\right)^4\)
\(\left\{{}\begin{matrix}\left(2x+1\right)^4=3^4\Rightarrow2x+1=3\Rightarrow x=1\\\left(2x+1\right)^4=\left(-3\right)^4\Rightarrow2x+1=-3\Rightarrow x=-2\end{matrix}\right.\)
Vậy \(x=1;x=-2\)
c) Bạn xem lại đề bài nhé!
d) \(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)
\(\Rightarrow\left(5x-2\right)^{10}-\left(5x-2\right)^{100}=0\)
\(\Rightarrow\left(5x-2\right)^{10}.\left[1-\left(5x-2\right)^{90}\right]=0\)
+) TH1: \(\left(5x-2\right)^{10}=0\)
\(\Rightarrow5x-2=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
+) TH2: \(1-\left(5x-2\right)^{90}=0\)
\(\Rightarrow\left(5x-2\right)^{90}=1\)
\(\Rightarrow\left(5x-2\right)^{90}=1^{90}=\left(-1\right)^{90}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(5x-2\right)^{90}=1^{90}\Rightarrow5x-2=1\Rightarrow x=\dfrac{3}{5}\\\left(5x-2\right)^{90}=\left(-1\right)^{90}\Rightarrow5x-2=-1\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{5};\dfrac{2}{5};\dfrac{3}{5}\right\}\)
1) a) \(3x\left(x-\dfrac{2}{3}\right)=0\Leftrightarrow\left\{{}\begin{matrix}3x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x=0;x=\dfrac{3}{2}\)
b) \(7\left(x-1\right)+2x\left(1-x\right)=0\Leftrightarrow7x-7+2x-2x^2=0\)
\(\Leftrightarrow\) \(-2x^2+9x-7=0\)
\(\Delta=9^2-4.\left(-2\right)\left(-7\right)=81-56=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-9+5}{-4}=1\)
\(x_2=\dfrac{-9-5}{-4}=\dfrac{7}{2}\)
vậy \(x=1;x=\dfrac{7}{2}\)
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)
\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)
\(\Leftrightarrow x=\dfrac{19}{4}\)
Với mọi \(x\in R\)
\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)
với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)
\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)
Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)
Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)
b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)
Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)
Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)
a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)
Vì \(\left(2x+\dfrac{1}{4}\right)^4\ge0\)
Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)
Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)
b) \(E=\left(5-3x\right)^2-2013\)
Vì \(\left(5-3x\right)^2\ge0\)
Nên \(\left(5-3x\right)^2-2013\ge-2013\)
Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)
c) \(A=2013+\left|2x-3\right|\)
Vì \(\left|2x-3\right|\ge0\)
Nên \(2013+\left|2x-3\right|\ge2013\)
Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)
Vì \(\left|\dfrac{1}{2}x-3\right|\ge0\)
Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)
Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)
a) 27x : 3x = 9
(27 : 3)x = 9
9x = 91
x = 1
b) 25 : 5x =5
5x = 25 : 5
5x = 51
x = 1
c) 2 : (x + 2)2 = \(\dfrac{1}{18}\)
(x + 2)2 = 2 : \(\dfrac{1}{18}\)
(x + 2)2 = 36
\(\Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
d) (5x - 1)2 = \(\dfrac{36}{49}\)
(5x - 1)2 = \(\left(\dfrac{6}{7}\right)^2\)
Bạn làm tiếp nha, mình có việc bận :v
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)
Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)
Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)
b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)
Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)
Mấy bài còn lại làm tương tự.
a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
=>16x-7=13x+2
=>3x=9
hay x=3
b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)
=>x+2017=0
hay x=-2017
e: \(\left(2x-3\right)^2=144\)
=>2x-3=12 hoặc 2x-3=-12
=>2x=15 hoặc 2x=-9
=>x=15/2 hoặc x=-9/2