K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a^2+24là số chính phương ta có từ 2^1đến 2^4 loại (nhỏ hơn 24)

TA CÓ :2^5=32

2^6=64

2^7=128

2^8=256

2^9=512

2^10=1024

2^11=2048

vv...

vậy ta cộng lần lượt 24 với 2^5, 2^6TỚI 2^12 Đi

vậy là mình cũng tìm ra 32

32^2+24=1048=2^11

!

11 tháng 8 2016

tại sao 2^11= 2048  Mà bên dưới 32^2+24 =1048 =2^11

30 tháng 1 2022

hello

5 tháng 12 2016

Số chính phương có 2 chữ số :

16 ; 25 ; 36 ; 49 ; 64 ; 81 .

Các số trên , chỉ có số 81 là thỏa mãn yêu cầu . 

Vậy P = 81

a2 = 81 + 19 = 100

a = 10

5 tháng 12 2016

bạn làm ntn ra 81

5 tháng 12 2016

\(a^2-19=b^2\Leftrightarrow a^2-b^2=19\Rightarrow\left(a-b\right)\left(a+b\right)=1.19=19.1\)

\(\hept{\begin{cases}a-b=1\\a+b=19\end{cases}}\Leftrightarrow\hept{\begin{cases}a=10\\b=9\end{cases}}\)

DS: a=10

5 tháng 12 2016

Tìm số tự nhiên a để biểu thức P = a^2 - 19 là số chính phương

P = 81

a = 10

27 tháng 4 2020

Do(23−a)(a−3)(23−a)(a−3) là một số chính phương nên số đó lớn hơn 0. Vậy ta có điều kiện của aa là 3<a<233<a<23 tồn tại một số kk sao cho

(23−a)(a−3)=k2(23−a)(a−3)=k2

<−>−a2+26a−69−k2=0<−>−a2+26a−69−k2=0

<−>a2−26a+k2+69=0<−>a2−26a+k2+69=0

Khi đó, ta có

Δ′=132−(k2+69)=100−k2Δ′=132−(k2+69)=100−k2

Ta có

(23−a)(a−3)=−a2+26a−69=−(a−13)2+100≤100(23−a)(a−3)=−a2+26a−69=−(a−13)2+100≤100

Do đó k2≤100k2≤100. Vậy Δ′≥0Δ′≥0.

TH1: Δ′=0Δ′=0

Khi đó, ta có k2=100k2=100 hay k=10k=10. Vậy a=13a=13.

TH2: Δ′>0Δ′>0

Khi đó, hai nghiệm của ptrinh là

a1=13−√100−k2,a2=13+√100−k2a1=13−100−k2,a2=13+100−k2

Do aa là một số tự nhiên nên √100−k2100−k2 cũng bắt buộc phải là một số tự nhiên, tức là 100−k2100−k2 là một số chính phương.

Thử các giá trị của kk từ 1 đến 10 ta thấy chỉ có k=6k=6 và k=8k=8 là thỏa mãn.

Với k=6k=6 thì a=5a=5 hoặc a=21a=21.

Với k=8k=8 thì a=7a=7 hoặc a=19a=19.

Vậy các giá trị của a thỏa mãn là {5,7,13,19,21}{5,7,13,19,21}.

28 tháng 4 2020

cái chỗ 132-(k2+69.... biến đổi thế nào zậy bạn