K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Vì (P) đi qua A(0;-1) và B(2;-1) nên

\(\left\{{}\begin{matrix}c=-1\\4a+b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=0\end{matrix}\right.\)

a: Vì (P) đi qua A(1;0) nên c=0

Vậy: \(y=ax^2+bx\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-3}{2}\\-\dfrac{b^2-4ac}{4a}=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2a}=\dfrac{3}{2}\\\dfrac{b^2}{4a}=\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\9a^2-25a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{25}{9}\\b=\dfrac{25}{3}\end{matrix}\right.\)

4 tháng 12 2021

\(a,A\left(1;0\right)\in\left(P\right)\Leftrightarrow a+b+c=0\\ I\left(-\dfrac{3}{2};-\dfrac{25}{4}\right)\text{ là đỉnh}\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\b=3a\\\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=0\\b=3a\\-\dfrac{9}{4}a+c=-\dfrac{25}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=-4\end{matrix}\right.\)

Vậy \(\left(P\right):y=x^2+3x-4\)

4 tháng 12 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}9a+3b=-6\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\3a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=-\dfrac{1}{3}x^2-x+2\\ b,\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\4a-b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=-1\end{matrix}\right.\Leftrightarrow\left(P\right):y=-\dfrac{1}{4}x^2-x+2\)

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


23 tháng 10 2020

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(2\right)^2+2b+c=-4\\\frac{-b}{2a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+-2b+c=0\left(1\right)\\4a+2b+c=-4\\2a+b=0\left(3\right)\end{matrix}\right.\Rightarrow2\left(2a+b\right)+c=-4\left(2\right)\)

Thế (3) vào (2)

\(\Rightarrow0+c=-4\Rightarrow c=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-1\\c=-4\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y =  - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)

b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b =  - 2a.\)

Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b =  - 1.\)

Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b =  - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b =  - 2}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)

c) Parabol có đỉnh \(I(1;4)\) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y =  - {x^2} + 2x + 3.\)

13 tháng 12 2017

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

Xác định phương trình hàm số bậc hai Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 ) b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 ) c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 ) d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 ) e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 ) f , Đi qua A ( 1, 1 )...
Đọc tiếp

Xác định phương trình hàm số bậc hai

Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết

a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 )

b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 )

c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 )

d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 )

e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 )

f , Đi qua A ( 1, 1 ) B ( -1 ,9 ) c ( 0 , 3 )

g , Có đỉnh I ( 1 , 5 ) và đi qua A ( -1 , 1 )

h , có giá trị của trục bằng -1 và đi qua A ( 2 , -1) B ( 0 , 3 )

i , Đi qua A ( -1 , 8 0 , B ( 2 , -1 ) , C ( 1 , 0 )

j , Có đỉnh I ( 2 , 1 ) và cắt oy tại điểm có tung độ bằng 7

k ,Có giá trị lớn nhất bằng 2 và đi qua A ( 1 , 1 ) N ( -1 , 1 0

e, có giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi x = \(\frac{1}{2}\)và nhận giá trị bằng 1 khi x = 1

m , Có đỉnh I ( 3 , 4 ) và đi qua M ( -1 ,0)

n , Có trục đối xứng x =1 và đi qua M ( 0 , 2 ) N ( 3 , 4 )

o , Có đỉnh \(\in\) ox , trục đói xứng x =2 đi qua N ( 0 , 2 )

p , Đi qua M ( 2 , -3 ) có đỉnh I ( 1 , -4 )

0