K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y =  - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)

b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b =  - 2a.\)

Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b =  - 1.\)

Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b =  - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b =  - 2}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)

c) Parabol có đỉnh \(I(1;4)\) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y =  - {x^2} + 2x + 3.\)

5 tháng 6 2017

a)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)

Vậy parabol là \(y = 2{x^2} + 6x + 4\)

b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)

Suy ra \(x_I = \frac{{ - b}}{{2a}} =  - 3 \Leftrightarrow b = 6a\)     (1)

Thay tọa độ điểm I vào ta được:

\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b =  - 9\\ \Leftrightarrow 3a - b =  - 3\left( 2 \right)\end{array}\)

Từ (1) và (2) ta được hệ

\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)

Vậy parabol là \(y = {x^2} + 6x + 4\).

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

a: Vì (P) đi qua A(1;0) nên c=0

Vậy: \(y=ax^2+bx\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-3}{2}\\-\dfrac{b^2-4ac}{4a}=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2a}=\dfrac{3}{2}\\\dfrac{b^2}{4a}=\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\9a^2-25a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{25}{9}\\b=\dfrac{25}{3}\end{matrix}\right.\)

4 tháng 12 2021

\(a,A\left(1;0\right)\in\left(P\right)\Leftrightarrow a+b+c=0\\ I\left(-\dfrac{3}{2};-\dfrac{25}{4}\right)\text{ là đỉnh}\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\b=3a\\\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=0\\b=3a\\-\dfrac{9}{4}a+c=-\dfrac{25}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=-4\end{matrix}\right.\)

Vậy \(\left(P\right):y=x^2+3x-4\)

b: Vì (P) đi qua A(0;-1) và B(2;-1) nên

\(\left\{{}\begin{matrix}c=-1\\4a+b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=0\end{matrix}\right.\)

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

5 tháng 6 2017

Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).

9 tháng 11 2021

bấm máy giải hệ ra 3 chứ sao lại là -3 nhỉ