K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}9a+3b=-6\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\3a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=-\dfrac{1}{3}x^2-x+2\\ b,\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\4a-b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=-1\end{matrix}\right.\Leftrightarrow\left(P\right):y=-\dfrac{1}{4}x^2-x+2\)

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


a: Vì (P) đi qua A(1;0) nên c=0

Vậy: \(y=ax^2+bx\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-3}{2}\\-\dfrac{b^2-4ac}{4a}=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2a}=\dfrac{3}{2}\\\dfrac{b^2}{4a}=\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\9a^2-25a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{25}{9}\\b=\dfrac{25}{3}\end{matrix}\right.\)

4 tháng 12 2021

\(a,A\left(1;0\right)\in\left(P\right)\Leftrightarrow a+b+c=0\\ I\left(-\dfrac{3}{2};-\dfrac{25}{4}\right)\text{ là đỉnh}\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\b=3a\\\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=0\\b=3a\\-\dfrac{9}{4}a+c=-\dfrac{25}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=-4\end{matrix}\right.\)

Vậy \(\left(P\right):y=x^2+3x-4\)

b: Vì (P) đi qua A(0;-1) và B(2;-1) nên

\(\left\{{}\begin{matrix}c=-1\\4a+b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=0\end{matrix}\right.\)

13 tháng 12 2017

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

22 tháng 7 2017

Đáp án A

26 tháng 10 2018

a) (P) cắt trục Ox tại điểm M(2;0) nên :

0=a.2^2+3.2-2=>a=-1

vậy (P): y=-x^2+3x-2

b) trục đối xứng x=-3 hay

\(-\dfrac{b}{2a}=-3\Leftrightarrow\dfrac{-3}{2a}=-3\Rightarrow a=\dfrac{1}{2}\\ \Rightarrow\left(P\right):y=\dfrac{1}{2}x^2+3x-2\)

c) có đỉnh I(-1/2;-11/4)=>

\(a.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2=-\dfrac{11}{4}\Rightarrow a=3\Rightarrow\left(P\right):y=3x^2+3x-2\)

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

23 tháng 10 2020

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(2\right)^2+2b+c=-4\\\frac{-b}{2a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+-2b+c=0\left(1\right)\\4a+2b+c=-4\\2a+b=0\left(3\right)\end{matrix}\right.\Rightarrow2\left(2a+b\right)+c=-4\left(2\right)\)

Thế (3) vào (2)

\(\Rightarrow0+c=-4\Rightarrow c=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-1\\c=-4\end{matrix}\right.\)