K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:

\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b =  - 1\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm B(2; 4) nên:

\(a{.2^2} + 2b + 1 = 4 \Leftrightarrow 4a + 2b = 3\)

Từ 2 phương trình trên, ta có \(a = \frac{5}{2};b = \frac{{ - 7}}{2}\)

=> Hàm số cần tìm là \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\)

b) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:

\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b =  - 1\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có trục đối xứng x=1

\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow  - b = 2a \Leftrightarrow 2a + b = 0\)

Từ 2 phương trình trên, ta có \(a = 1;b =  - 2\)

=> Hàm số cần tìm là \(y = {x^2} - 2x + 1\)

c) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có đỉnh \(I(1;2)\) nên:

\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow  - b = 2a \Leftrightarrow 2a + b = 0\)

\(a{.1^2} + b.1 + 1 = 2 \Leftrightarrow a + b = 1\)

Từ 2 phương trình trên, ta có \(a =  - 1;b = 2\)

=> Hàm số cần tìm là \(y =  - {x^2} + 2x + 1\)

d)  Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm C(-1; 1) nên:

\(a.{( - 1)^2} + b.( - 1) + 1 = 1 \Leftrightarrow a - b = 0 \Leftrightarrow a = b\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có tung độ đỉnh là -0,25 nên:

\(\frac{{ - \Delta }}{{4a}} =  - 0,25 \Leftrightarrow  - \frac{{{b^2} - 4.a.1}}{{4a}} =  - 0,25 \Leftrightarrow {b^2} - 4a = a \Leftrightarrow {b^2} = 5a\)

Thay a=b ta có:

\({b^2} = 5b \Leftrightarrow b=0\) hoặc \(b=5\)

Vì \(a \ne 0\) nên \(a=b=5\)

=> Hàm số cần tìm là \(y = 5{x^2} + 5x + 1\)

23 tháng 12 2015

(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$

a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):-​-​x2+2x+1

b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3

5 tháng 6 2017

a)

16 tháng 11 2023

loading...  loading...  loading...  loading...  

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


16 tháng 11 2023

loading...  loading...  loading...