K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

\(K=\dfrac{3-4x}{x^2+1}\)

\(\Leftrightarrow Kx^2+1=3-4x\)

\(\Leftrightarrow Kx^2+4x+K-3=0\)

Để phương thức trên tồn tại \(x\) thì:

\(\text{4-K.(K-3)=K^2}+3K+4\ge0\)

\(\Leftrightarrow K^2-3.K-4\le0\)

\(\Leftrightarrow\left(K+1\right).\left(K-4\right)\le0\)

\(\Leftrightarrow-1\le K\le4\)

Vậy \(MIN\left(K\right)=-1\)

\(MAX\left(K\right)=4\)

26 tháng 8 2017

chet tui lon roi ma thôi xem như bo thi cho ba hahahehe

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

Mình giải phương pháp tìm miền giá trị

\(A=\dfrac{4x+3}{x^2+1}\)

\(\Leftrightarrow Ax^2-4x+A-3=0\)(1)

+)Xét A=0\(\Rightarrow-4x-3=0\Leftrightarrow x=-\dfrac{3}{4}\)

+)Xét \(A\ne0\)

=>Để pt(1) có nghiệm thì \(\Delta=16-4A\left(A-3\right)\ge0\)

\(\Leftrightarrow4-A\left(A-3\right)\ge0\)

\(\Leftrightarrow-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(-A-1\right)\ge0\)

\(\Leftrightarrow-1\le A\le4\)

Vậy \(MINA=-1\Leftrightarrow\)x=-2

\(MAX=4\Leftrightarrow x=\)\(\dfrac{1}{2}\)

26 tháng 8 2017

GTNN : 

\(K=\frac{3-4x}{x^2+1}=\frac{-x^2-1+x^2-4x+4}{x^2+1}=\frac{\left(x^2+1\right)+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\)

K đạt MIN là 1 khi x = - 2

GTLN :

\(K=\frac{3-4x}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2+4x+1\right)}{x^2+1}=\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Đạt GTLN là 4 tại x = - 1/2

27 tháng 8 2017

K MIN =1 khi x=2. Hung viết nhầm

23 tháng 12 2017

 A = (4x + 3)/(x² + 1) 

CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1) 

Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn : 

(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d² 

<=> a²d² - 2.ad.bc + b²c² ≥ 0 

<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM 

- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d 

- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²) 

<=> (4x + 3)² ≤ 25(x² + 1) 

<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1) 

<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1) 
 

23 tháng 12 2017

mà anh ơi kết quả thầy em cho là -1 <=A<=4

29 tháng 3 2017

a/ \(M=\dfrac{x^2-x+1}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3x^2-6x+3}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3\left(x-1\right)^2}{x^2+2x+1}\ge\dfrac{1}{4}\)

b/ \(N=\dfrac{3x^2+4x}{x^2+1}=4-\dfrac{x^2-4x+4}{x^2+1}=4-\dfrac{\left(x-2\right)^2}{x^2+1}\le4\)